

An Incremental Strategy for Spacecraft Flight Software Reuse

Gary M. Heiligman, T. Adrian Hill, Robyn L. LeGrys, and Stephen P. Williams
The Johns Hopkins University Applied Physics Laboratory

11100 Johns Hopkins Road, Laurel, MD 20723-6099
mailto:Gary.Heiligman@jhuapl.edu

Abstract

This paper describes a process of spacecraft flight
software development that reuses requirements, designs,
and implementations. Beginning in 1997, The Johns
Hopkins University Applied Physics Laboratory
(JHU/APL) developed the flight software for five different
space missions: (1) Thermosphere, Ionosphere,
Mesosphere Energetics and Dynamics (TIMED), (2)
COmet Nucleus TOUR (CONTOUR), (3) MErcury
Surface, Space ENvironment, GEochemistry, and Ranging
(MESSENGER), (4) Solar TErrestrial RElations
Observatory (STEREO), and (5) New Horizons, a mission
to Pluto and beyond. JHU/APL met strict constraints of
budget and schedule by reusing products from each
mission for the following one in a successively more
comprehensive fashion. Keys to the success of this reuse
are consistent external interface protocols, rigorous
requirements management, retention of the original
development documentation, use of a consistent
development process, and a group organization that
fosters reuse. The reused packages include bootstrap, task
scheduling, uplink, command handling, autonomy, and
1553 bus support.

1. Introduction
The Johns Hopkins University Applied Physics

Laboratory (JHU/APL) has been developing spacecraft
flight software ever since the first general-purpose
computers were flown on spacecraft [1]. This software is
of three types.
(1) Command and data handling (C&DH) programs

process telecommands, transmit telemetry, and
provide onboard data storage.

(2) Guidance and control (G&C) programs determine the
spacecraft’s attitude and trajectory and control them.

(3) Instrument programs control and take data from the
payload and usually run on a dedicated instrument
data processing unit (IDPU).

IDPU software is delivered with the instruments; C&DH
and G&C software are provided with the spacecraft bus.

In 1997, JHU/APL completed the critical design review
(CDR) for the TIMED mission. Mission-level CDRs for
three other flight projects followed in quick succession:
CONTOUR in 2000, MESSENGER in 2002, and STEREO
in 2003. The CDR for a fourth mission, New Horizons,
will also be held in 2003. Each of these missions requires
C&DH and G&C software; some require instrument
software as well.

As one of its unique capabilities, JHU/APL’s Space
Department provides experience and expertise in
developing and testing spacecraft flight software. A group
of less than 30 developers delivers the software for these
and future missions. Software reuse plays an important
role in the way the group creates these computer
programs.

At JHU/APL, reuse consists of taking the requirements,
designs, source code, and associated documentation from
past missions as the starting point for each new mission.
The developers of CONTOUR and later missions have
succeeded in reusing incrementally greater portions of the
software from past missions in a process that we describe
here.

2. Motivations for reuse
2.1. Reliability

Because failure of a critical computer program could
easily lead to the loss of the entire mission, reliability is
paramount for spacecraft flight software. JHU/APL
therefore takes a conservative approach to the
development of both hardware and software. For example,
JHU/APL uses only space-qualified, radiation-hard
processors and memory in its spacecraft. The development
tools (compiler, locator, and operating system) must also
be highly reliable. “Flight heritage”—the proven
capability of an article to perform to specifications in the
harsh environment of space—is considered an asset in
both hardware and software.

In software, flight heritage is obvious when source
code is reused from previous missions. However, flight

mailto:Gary.Heiligman@jhuapl.edu

heritage is also valuable for designs and requirements,
because correctness of these products is just as critical to
mission success as bug-free software.

2.2. Volume
The C&DH and G&C programs for each mission

require tens of thousands of lines of code. Starting in
1997, JHU/APL has had to develop spacecraft flight
software at a rate of approximately one new mission per
year. Developing this much software anew for each
mission would strain JHU/APL’s in-house capability even
if time were not a factor.

2.3. Time
Deep-space missions must be launched on a schedule

dictated by the dynamics of the Solar System. In order to
be ready for launch, the software must be developed,
integrated, and tested. Thus reuse often becomes essential
even if the developers would like to make changes (for
efficiency, maintainability, reusability, etc.), because there
is simply not enough time.

3. Barriers to Reuse
3.1. Differences in mission-level requirements

dictate different solutions
The most important barrier to reuse is the different

requirements at the mission level that lead to different
software architectures. The five missions discussed in this
paper are the following.
(1) TIMED is the first mission in NASA’s Solar

Terrestrial Probes program. It studies the Earth’s
upper atmosphere with four remote-sensing
instruments. It has performed its scientific mission
successfully since its launch on December 7, 2001.

(2) CONTOUR was a Discovery-class mission to explore
the diversity of comets. It performed flawlessly for six
weeks of phasing orbits, but it was destroyed on
August 15, 2002, during the solid-rocket motor burn
that was to place it in heliocentric orbit.

(3) MESSENGER is a Discovery-class mission to fly by
and orbit Mercury. It is manifested for launch on
March 10, 2004.

(4) STEREO is the third mission in NASA’s Solar
Terrestrial Probes program. It consists of two
identical spacecraft in different heliocentric orbits.
Launch (from a single vehicle) will occur in
November 2005.

(5) New Horizons is the first mission to Pluto-Charon and
the Kuiper Belt of rocky, icy objects beyond. Launch
is planned for January 2006.

We summarize the differences for these five missions
in the Appendix. The number and types of processors,
how they are interconnected, and the lifetime of the

mission all affect the software in fundamental ways. The
different mission drivers, though, are often the most
critical barriers to reuse, because they may dictate that a
solution that worked for past missions is untenable for the
new mission. They may affect the level of autonomy, the
timing constraints, or the basic assumptions under which
the software must function.

3.2. Focus on individual missions means limited
effort for reuse per se

Flight software development at JHU/APL is funded
almost entirely by the individual missions. Mission
managers are understandably reluctant to devote precious
dollars allocated to their own mission to fund reusability
improvements that primarily benefit future missions. And
missions not yet funded for implementation generally are
unable to provide the resources to ensure that a flight
software product is developed for reusability. Thus there is
no ready pool of money for reuse per se. The staff
organization within JHU/APL takes on the responsibility
of fostering reuse as a part of its primary goal of
developing mission-specific software.

4. Framework for reuse
4.1. Hardware architecture

The spacecraft before TIMED distributed the data
processing over hardware in several different ways and
used a variety of processors and implementation
languages. Since then, however, three features have
contributed to the stabilization of G&C and C&DH
software.

4.1.1. The integrated electronics module (IEM). On
TIMED and all subsequent missions, a PCI backplane
connects the command and data handling (C&DH)
processor, solid-state recorder, and transponder interfaces
in one physical box: the IEM. Consistency of uplink
protocols is in part a result of this decision. Most missions
have two IEMs for full redundancy.

4.1.2. The UTMC SµMMIT chip. TIMED and all
subsequent missions have used a consistent protocol and
hardware set to communicate between the processor and
many system components: the MIL-STD-1553B Notice 2
bus and the SµMMIT integrated circuit family from
UTMC. Consistency of this interface enables much of the
external communication software to be reused.

4.1.3. The power distribution unit interface. On
CONTOUR and all subsequent missions, electronics in the
power distribution unit provide the interface to the power
system electronics and some attitude control hardware
(e.g., thrusters, sun-angle sensors, reaction wheels, and
solar-array drives). It translates 1553 bus messages into
command signals to the hardware and translates data

signals into 1553 bus messages. Consistency of this
interface also leads to software reuse.

4.2. Development methodology and language
A shared methodology and language are essential for

reuse. The flight software developers use a “waterfall”
development methodology, as shown in Figure 1.

Requirements
Definition

Preliminary
Design

Detailed
Design

Code

Unit Test

Build
Integration
and Test

Acceptance
Test

(Each Build)

Repeat for
Each Build

Software
Requirements
Review

Preliminary
Design
Review

Detailed
Design
Review

Code
Walkthroughs

Final
Release

Acceptance
Test Plan

Generation

Test Plan Review
(Each Build)

Figure 1. The flight software development

methodology

The design methodology, based on the process of
Shumate and Keller [2], is tailored for the development of
mission-critical, embedded, real-time software. Program
definition language (PDL) is used in addition to the
Shumate-Keller graphical notation to describe functional
designs. The designs are implemented in the C
programming language as set forth in the ANSI 1990
standard [3].

4.3. Reviews and code walkthroughs
One of the most important contributing factors to

effective reuse at JHU/APL is the participation of
developers from other missions on each mission’s review
panels. The Space Department’s policies and procedures
dictate that for each mission all requirements, all designs,
and all new code must be peer-reviewed. The reviews
follow a set procedure, and every review panel must
include a participant not involved with the development of
that mission.

Thus developers of later missions learn about products
from earlier missions. Often, this knowledge comes at a
stage such that the product can be reused in the later
mission with minimal effort.

When the outside reviewer is from a mission at a later
stage of development, the reviewer may recommend that

the developers reuse part or all of a product from an earlier
mission.

Also, during the review of a partially reused design, the
reviewers may find defects in a reused portion of the
design. The corrective actions may apply to both the
earlier and later missions; thus, corrective actions
themselves can be reused.

4.4. Process documentation
Each mission requires a software development

management plan (SDMP) tailored to its unique needs.
Large portions of this document are often reusable.

Perhaps more importantly, consistency of the software
modus operandi means that the developers need not learn
a new way of doing business when they begin work on a
mission. It is particularly important that the graphical
design notation not change, because these products are
both time-consuming to produce and nontrivial to review.

4.5. Development tools
For a mission to reuse the development products of a

preceding mission efficiently, paper copies are inadequate.
The reason is that the products inevitably require tailoring
for each new mission. JHU/APL addresses this problem in
two ways: by using a consistent tool set across missions
and by retaining the development products from past
missions in their original form.

 Table 1 is a list of the tools most heavily used for
software development

Table 1. Development tools

Product Tool Vendor
Itemized requirements DOORS Telelogic
Diagrams VISIO Microsoft
Commands and telemetry Excel Microsoft
1553 bus schedules Excel Microsoft
Process documentation Word Microsoft
Presentation graphics PowerPoint Microsoft

In addition, where the hardware permits, JHU/APL also

uses a consistent development environment. For example,
MESSENGER and STEREO both use VxWorks 5.3.1 and
Tornado 1.0.1 from Wind River Systems with the Multi
1.8.8 C compiler from Green Hills Software. TIMED,
CONTOUR, and New Horizons use Nucleus+ from
Accelerated Technologies and the Tasking C compiler.

4.5.1. Retention of editable electronic copies. The
documentation for each mission is delivered into a formal
configuration control system. However, this system
usually accepts documents in Microsoft Word or Adobe
PDF format. For reuse it is critical that the products from
each phase of the development project be retained in an
editable form so that they can be tailored for the next

mission. Thus the DOORS, VISIO, PowerPoint, etc.
documents in their native formats are kept intact past the
end of the mission so they can be reused.

4.5.2. Isolating changes to reused software. One of
the biggest challenges to partial reuse is determining
whether a change from heritage introduces a defect. At
JHU/APL, the solution is to review the reused products
(and the new ones) for each mission, with two exceptions.
First, fully reused source code is not inspected. Second,
the reused portion of partially reused source code is not
inspected unless the interface or environment changes.

4.6. Group organization
The Embedded Applications Group of JHU/APL’s

Space Department is responsible for developing spacecraft
flight software. This organization provides the physical
space, desktop computers, and office software for the
developers (the missions provide development host
computers, development tools, and the target platforms). It
also sets policies and procedures, provides training,
manages the staff, and defines the culture in which the
developers work. The individual developers are usually
assigned to only one mission at a time, so it is through the
group organization that reuse is fostered. Two factors
assist in fostering reuse.

4.6.1. A culture of mutual assistance. If a project fails,
JHU/APL views it as a failure of the entire organization.
Thus developers are not motivated to segregate themselves
on their own projects and responsibilities; instead, they are
encouraged to communicate with developers on other
projects and with subsystems outside of flight software on
their own missions. The group management facilitates this
communication by keeping the group apprised of the
progress of each mission and encouraging the sharing of
lessons learned. Developers can spend a limited amount of
time attending meetings or answering questions not
directly related to their primary mission without charging
a special budget. This encourages a culture of mutual
assistance, which is essential for reuse to succeed.

4.6.2. An emphasis on heritage as an asset. JHU/APL
advocates that developers be able to answer the question
“What did past missions do?” before creating their own
new requirements, designs, or code. Because the design
documentation from the previous missions is readily
available, answering this question is typically easier than
creating a new document.

5. Incremental reuse at each development
phase

5.1. Reusable development products

Products of the development process are listed in Table
2. Those that are reused in whole or in part are in boldface.

Table 2. Reusable development products

Phase Products
Requirements

definition
Itemized requirements
Acceptance test plan
Context diagrams

Preliminary design Task communication graphs
Software architecture diagrams
Data flow diagrams
Commands and telemetry
Bus schedules

Detailed design Task flow diagrams and PDL
Method flow diagrams and PDL
Package diagrams
Dependency diagrams
Header files

Coding Source code files
Unit test Unit test harnesses
(All phases) Software development

management plan
Coding standards

In general, the product types that are reusable are

“building blocks”; those that are not reusable describe how
the building blocks are put together. For example, the task
communication graphs describe how all the flight software
functions work together: because the spacecraft have
different functional roles these diagrams are generally not
reusable. On the other hand, task flowcharts describe the
operation within a given functional area: these are often
reusable because the functional task and its requirements
are reused from mission to mission.

5.2. Requirements definition
An essential feature of JHU/APL’s development

process is careful management of requirements.
Developers of each mission review software requirements
to ensure that they are itemized, complete, consistent,
unambiguous, verifiable, and traceable to the parent
system specification. The requirements management tool
(DOORS) organizes the requirements hierarchically, so
developers of successive missions can select individual
requirements, modules, sections, or even whole documents
for reuse.

This type of reuse is enormously valuable because all
the succeeding development phases can take as their
starting point the products from a previous mission.
Measures of requirements reuse are probably a better
indicator of software heritage and reliability than metrics
at later phases.

5.3. Preliminary design

The developers perform functional and structural
decomposition during this phase, i.e., they identify tasks
(threads of program execution) and packages (mutually
dependent groups of functions and data structures). Many
individual tasks are reused from mission to mission. But
the task communication graph tends not to be very
reusable because the way that the tasks interact with one
another varies widely from mission to mission. Similarly,
many individual packages are reused repeatedly. But the
software architecture diagram that describes how packages
depend on one another varies considerably for each
mission.

Within packages and tasks, data flow diagrams and the
data dictionaries are heavily reused. Reusing command
and telemetry descriptions is valuable at this stage because
the detailed designs and implementations follow directly
from the description of the command.

5.4. Detailed design
The developers define the package diagram—the

functions and data stores implemented by each package—
during detailed design. This product is highly reusable
from mission to mission, although functions are frequently
added or removed during the development process.
Application program interfaces (APIs) are also defined
during this phase. When an API can be reused from a
previous mission, all the detailed designs and code that use
that API are more reusable. As with the software
architecture diagram, the dependency diagram—the “who
calls whom” graph—tends to be less reusable because the
way that packages fit together varies from mission to
mission.

In detailed design, developers represent the functional
flow of tasks and methods with either graphical notation
or pseudocode. These products are reusable either in
whole or in part when the functional areas they implement
are similar.

5.5. Code
Source code reuse is the most rudimentary form of

reuse. Mission management often measures reuse at this
level because it is a convenient metric for flight heritage.
However, it is an inconsistent indicator of software
reliability unless the products from preceding phases are
reused. In other words, if heritage source code is used in
new ways, new defects may manifest themselves.

Rather than dictate full reuse in such cases, JHU/APL
advocates incremental reuse when the interfaces must be
different but the underlying algorithms are the same. An
example of this incremental reuse occurs when a resource
is used by only one task in one design but shared by many
tasks in a later design. When this pattern occurs the shared
resource requires a protection mechanism (e.g., a mutual
exclusion semaphore). This is added during package

design, and the addition propagates through package
diagrams, flowcharts, header files, and source code.

6. Reused functional areas
Table 3 provides a summary of the functional areas that

have been or are being reused by the sequence of missions
starting with TIMED. Items in italics achieved a level of
reuse of 50% or more.

Table 3. New and reused functional areas

Functional area New
development(s)

Reuse

Bootstrap TIMED CONTOUR
New Horizons

Bootstrap MESSENGER STEREO
Uplink TIMED CONTOUR

MESSENGER
STEREO
New Horizons

Command
executive and
macros

TIMED CONTOUR
MESSENGER
STEREO
New Horizons

Task scheduler
Preliminary design,
detailed design, and
code

CONTOUR MESSENGER
STEREO
New Horizons

1553 bus support
Requirements,
preliminary design,
and code

CONTOUR MESSENGER
STEREO
New Horizons

Hardware-specific
utilities
Detailed design and
code

TIMED CONTOUR
New Horizons

Hardware-specific
utilities
Detailed design and
code

MESSENGER STEREO

Autonomy and
time-tagged rules

TIMED CONTOUR
MESSENGER
STEREO
New Horizons

Autonomy reverse
polish notation

MESSENGER STEREO
New Horizons

6.1. Bootstrap
The bootstrap program takes the processor from its

initial—possibly indeterminate—state after reset to the
point that the spacecraft flight application can start.

On spacecraft that have fully redundant processors, the
bootstrap program also provides access to the backup

processor while the primary processor runs the flight
application. The nature and extent of this capability is
determined during requirements definition and affects the
itemized requirements and preliminary design products.

Much of the detailed design is dependent on the
processor and operating system, so there are two lineages
in the later development phases. The MESSENGER-
STEREO lineage uses the BAE RAD6000 processor and
VxWorks; the TIMED-CONTOUR-New Horizons lineage
uses the Synova Mongoose V processor and Nucleus+.

6.2. Telecommand packet handling
For spacecraft uplink, TIMED developed the interface

to the spacecraft transponder and identified formats and
protocols from the Consultative Committee on Space Data
Standards (CCSDS). All missions following have held
largely to these decisions, so there is a great deal of reuse
of these products.

6.3. Command executive, macros, autonomy, and
time-tagged rules

The developers of TIMED created requirements,
designs, and code that defined how the spacecraft executes
individual commands, command sequences (“macros”),
and commands that must be executed at a specific time.
This functional area has remained stable throughout the
succeeding sequence of spacecraft. A key part of the
TIMED design that is carried over to following missions is
the API: the function calls and signatures needed to fit a
new command into the design framework are the same.

6.4. Task scheduler
How tasks are scheduled and synchronized is one of the

essential elements of preliminary design. The design
developed for TIMED is used on succeeding missions,
albeit tailored for the two different target environments.
The source code must be modified for each mission to
handle the differences in timing requirements and task
lists.

6.5. MIL-STD-1553B bus support
Although the MIL-STD-1553 bus architectures and

schedules are very different for each mission, the
requirements for bus support are fairly similar; these and
some preliminary designs are reusable. TIMED developers
created a spreadsheet template to develop the bus
schedules that following missions have reused.

At the detailed design level, however, each mission is
unique. This is because each message type requires its
own processing. Thus much of the detailed design and the
application levels of code are not reusable.

Bus support software beneath this layer is more
reusable. The function calls that exchange data with and
control the SµMMIT chip are reused. There are actually

two functional areas that are reused: one for the bus
controller and another for the remote terminal.

6.6. Hardware-specific utilities
Detailed designs and code that provide a layer of

abstraction to the hardware can be reused when the target
hardware and O/S are the same from mission to mission.
The bootstrap program and the task scheduler overlap with
this functional area of reuse. Among the utilities that are
reused are the following.

6.6.1. Non-volatile memory programming. STEREO
reuses MESSENGER’s designs and code for writing to
electrically erasable programmable read-only memory
(EEPROM). TIMED, CONTOUR, and New Horizons use
Flash memory for long-term storage, and there is
extensive reuse of these designs and code as well.

6.6.2. Peak power tracking. The power distribution
unit transmits data to the processor, which then calculates
a voltage regulator setting that optimizes the power from
the solar array and the charging of the battery. This
algorithm and much of the software that implements it are
reused from TIMED for MESSENGER and STEREO.
CONTOUR used fixed power settings, and New Horizons
uses a radioisotope thermoelectric generator (RTG), so
they do not reuse this software.

7. Example of incremental reuse: autonomy
One criticism of “institutionalized” reuse is that it often

stifles the ability to insert new technologies into already
existing systems. JHU/APL has successfully applied the
approach of incremental reuse in the area of flight
software that performs autonomy by expanding the
capability of the on-board software from mission-to-
mission while maintaining significant reuse at both the
design and coding levels.

The JHU/APL missions use an on-board autonomy
engine that is capable of evaluating autonomy rules used
for spacecraft health and safety. An autonomy rule
contains a premise (e.g., battery temperature > 30°C),
persistence limits (how long the condition must persist),
and a response (usually a command or macro that is
executed to respond to the condition). The autonomy rules
are not compiled into the flight software; rather, they are
designed by the spacecraft Safing Engineer and loaded to
the spacecraft. The on-board autonomy engine flight
software executes and acts on the loaded rules.

At the heart of the on-board autonomy engine is the
Data Collection Buffer (DCB). The DCB is a collection of
data points from all subsystems on the spacecraft that is
populated by the flight software and is refreshed at a 1 Hz
rate. DCB data include hardware data such as raw
voltages, currents, and temperatures, and software data
such as counters and flags. These points are all available

for use by the Safing Engineer for autonomy rules
premises.

7.1. TIMED capability
On TIMED, C&DH developers introduced the

autonomy engine to the flight software. The software
implementation provided support for performing simple
arithmetic and relational operations of data points in the
DCB. There were a limited number of predefined
expression formats that could be used as the premise of the
rule (e.g., “A > B AND C > D”). The software API
included methods to evaluate the rule premises, increment
persistence counters, fire commands and macros, as well
as support enabling and disabling autonomy rules and
resetting running persistence counters.

7.2. CONTOUR enhancements
Both developers and operators recognized a need to

expand the capability of the autonomy engine. The
TIMED version treated all DCB data points as 16-bit
unsigned integers. While this was adequate for most cases
there was a need for greater flexibility. On CONTOUR,
the team enhanced the flight software implementation to
support the use of 32-bit unsigned integers and IEEE-754
32-bit single precision floating point in the premise of
rules. This provided far greater flexibility to the Safing
Engineer in the development of the rules. Despite this
increased capability, CONTOUR reused more than 90% of
the design and implementation directly from TIMED.
Furthermore, the changes were isolated to specific
methods, and the API remained generally unchanged. This
minimized impact to other subsystems within the software
while providing greater capability.

7.3. MESSENGER enhancements
On MESSENGER, an even more powerful change was

introduced: a Reverse Polish Notation (RPN) evaluation
engine. Instead of restricting the rule premises to a list of
predefined expressions, the RPN engine allowed any
arbitrary combination of DCB data points, constants, and
operators to be used as the premise of a rule. In addition,
the list of possible operators found in rule premises was
expanded. An entire new software implementation was
required to perform the rule premise calculations using
RPN. This replaced the older style premises with
predefined expression formats. Despite this significant
new development, the remaining elements of the
autonomy implementation were directly reused from
CONTOUR, including all of the management required to
maintain persistence counters, fire commands and macros,
etc. This implementation will be used on both STEREO
and New Horizons. Again, a new technology and
expanded capability was introduced while still leveraging

the existing design and implementation from a previous
mission (CONTOUR).

8. Plan for the future
The motivations for software reuse will only increase in

the future. Where reuse enables JHU/APL to develop
reliable flight software rapidly at low cost, new missions
will pursue it. Two trends in particular are expected to
affect the software development process and software
reuse.

8.1. New hardware platforms
Only radiation-hardened microprocessors can be used

for mission-critical applications in outer space.
Development of these processors lags conventional
processor development by several years; nonetheless, new
generations of computer architecture become available to
flight software developers and old generations become
obsolete. For example, the BAE RAD750 processor (a
radiation-hardened Motorola XPC750) will supersede the
RAD6000.

Using newer processors affects the software
development process in several ways. First, any time the
processor or the tool chain changes at least some of the
code becomes obsolete. JHU/APL’s incremental reuse
strategy is well suited to deal with these changes, because
they can be isolated by phase and/or functional area and
products not affected by the change can be reused. This is
particularly true at the requirements level.

Second, because they are faster than older processors,
newer processors typically perform more functions in their
flight programs. This is likely to lead to fewer processors
with more functions in each. For example, the G&C and
C&DH functions can be combined into a single complex
program on a single processor. The reused designs from
individual programs can be combined in such a case;
however, the more complex the software, the more ways
that it can fail.

Third, more modern software tools are available on
newer processors. These include more mature compilers
following more modern language standards, full-featured
debuggers, tools for visualizing processor performance,
and stable operating systems. The use of these tools is
likely to lead to a more reusable base of flight software
products because fewer modules will be the result of
customizing to meet the foibles of a less-mature tool.

8.2. Unattended operation
Increased spacecraft autonomy is perhaps the dominant

trend in spacecraft flight software innovation today. Deep
space missions must carry out their missions without
oversight from the ground because the round-trip light
travel time makes real-time remote operation impossible.
For near-Earth missions the motivation for autonomous

operation is cost: multi-mission programs continually
strive to decrease the recurring cost of operations in order
to fund the next generation of spacecraft.

TIMED has already made significant strides in the
realm of unattended operations: operations of the
instruments and the spacecraft are decoupled, and most
ground contacts are now unattended. STEREO expects to
achieve a similar level of autonomy during its operational
phase. The next JHU/APL challenge will be two Geospace
missions: Ionosphere-Thermosphere Storm Probe (ITSP)
and Radiation Belt Storm Probe (RBSP) are part of
NASA’s “Living With a Star” program. They will
doubtlessly reuse much of the base of requirements,

design, and code developed for the sequence of missions
described here in order to minimize operational costs.

9. References
[1] Malcom, Horace, and Utterback, Harry K., “Flight Software
in the Space Department: A Look at the Past and a View Toward
the Future”, APL Tech. Dig. 20, JHU/APL, Laurel, MD, Oct –
Dec 1999, pp. 522 – 532.

[2] Shumate, Ken, and Keller, Marilyn, Software Specification
and Design: A Disciplined Approach for Real-Time Systems,
Wiley, New York, 1992.

[3] International Standard ISO/IEC 9899:1990: Programming
Languages—C, ISO, Geneva, 1990.

Appendix: Diversity of JHU/APL spacecraft missions

 TIMED CONTOUR MESSENGER STEREO New Horizons
Mission
profile

2 years, 625 km
Earth orbit

5 years, 1 AU
heliocentric orbit

5 years transfer, 1
year Mercury orbit

2-5 years, 1 AU
heliocentric orbit

15+ years, Solar
System escape

Integrated
electronic
modules
(IEMs)

2 2 2 1 2

Computers
per IEM

1 C&DH
1 GPS Nav

1 C&DH
1 G&C

1 C&DH / G&C
1 Fault protection

1 C&DH
1 G&C

1 C&DH
1 G&C

Processor
architecture

12 MHz
Mongoose V
(MIPS R3000)

12 MHz
Mongoose V
(MIPS R3000)

25 MHz
RAD6000
(IBM RS/6000)

25 MHz
RAD6000
(IBM RS/6000)

12 MHz
Mongoose V
(MIPS R3000)

Operating
System

Nucleus+ Nucleus+ VxWorks VxWorks Nucleus+

Solid-state
recorder

2.5 Gbit DRAM 5 Gbit DRAM 8 Gbit SRAM 8 Gbit SRAM 64 Gbit Flash

Power system Movable solar
array

Fixed solar array Movable solar
array

Fixed solar array Radioisotope
thermoelectric

Attitude
control

0.05° (actual) 0.1° (planned) 0.02° (planned) 0.002° (planned) 0.002° (planned)

G&C sensors Sun sensor, star
trackers, gyros,
GPS

Earth-Sun sensor,
star trackers,
gyros

Sun sensor, star
trackers, gyros

Sun sensor, star
tracker, gyros

Sun sensor, star
trackers, gyros

G&C
actuators

Reaction wheels,
torque rods, solar
array drive

Thrusters Reaction wheels,
thrusters, antenna,
solar array drive

Reaction wheels,
thrusters, antenna

Thrusters

Instrument
data interface

1553 bus (all) 1553 (mass spec.)
Dedicated (others)

Dedicated (imager)
1553 bus (others)

1553 bus (all) Dedicated (all)

Downlink 10kbps – 4Mbps 10bps – 255kbps 10bps – 104kbps 11bps – 720kbps 10bps – 104kbps
Mission
drivers

Decoupled
instrument
operations

Non-repeatable
encounters, open-
loop maneuvers

Mercury orbit
thermal, non-
repeatable
encounters

Attitude jitter,
decoupled
instrument
operations

Non-repeatable
encounters, RTG,
lifetime

	Introduction
	Motivations for reuse
	Reliability
	Volume
	Time

	Barriers to Reuse
	Differences in mission-level requirements dictate different solutions
	Focus on individual missions means limited effort for reuse per se

	Framework for reuse
	Hardware architecture
	The integrated electronics module (IEM). On TIMED and all subsequent missions, a PCI backplane connects the command and data handling (C&DH) processor, solid-state recorder, and transponder interfaces in one physical box: the IEM. Consistency of upli
	The UTMC SµMMIT chip. TIMED and all subsequent m�
	The power distribution unit interface. On CONTOUR and all subsequent missions, electronics in the power distribution unit provide the interface to the power system electronics and some attitude control hardware (e.g., thrusters, sun-angle sensors, react

	Development methodology and language
	Reviews and code walkthroughs
	Process documentation
	Development tools
	Retention of editable electronic copies. The documentation for each mission is delivered into a formal configuration control system. However, this system usually accepts documents in Microsoft Word or Adobe PDF format. For reuse it is critical that the p
	Isolating changes to reused software. One of the biggest challenges to partial reuse is determining whether a change from heritage introduces a defect. At JHU/APL, the solution is to review the reused products (and the new ones) for each mission, with

	Group organization
	A culture of mutual assistance. If a project fails, JHU/APL views it as a failure of the entire organization. Thus developers are not motivated to segregate themselves on their own projects and responsibilities; instead, they are encouraged to communicat
	An emphasis on heritage as an asset. JHU/APL advo

	Incremental reuse at each development phase
	Reusable development products
	Requirements definition
	Preliminary design
	Detailed design
	Code

	Reused functional areas
	Bootstrap
	Telecommand packet handling
	Command executive, macros, autonomy, and time-tagged rules
	Task scheduler
	MIL-STD-1553B bus support
	Hardware-specific utilities
	Non-volatile memory programming. STEREO reuses ME
	Peak power tracking. The power distribution unit transmits data to the processor, which then calculates a voltage regulator setting that optimizes the power from the solar array and the charging of the battery. This algorithm and much of the software tha

	Example of incremental reuse: autonomy
	TIMED capability
	CONTOUR enhancements
	MESSENGER enhancements

	Plan for the future
	New hardware platforms
	Unattended operation

	References

