A NASA Discovery mission to conduct the first orbital study
of the innermost planet
NASA logo carnegie institution logo JHU APL logo

Why Mercury?
The Mission
News Center
Science Operations
Who We Are
Related Links

Download iPhone/iPad app Information about Mercury Flybys Question and Answer End of Orbit Insertion Where is MESSENGER? Where is Mercury now? Subscribe to MESSENGER eNews

Mercury: The Key to Terrestrial Planet Evolution

« Back to Why Mercury Main Page

Question 4 : What is the structure of Mercury's core?

Mercury's magnetosphere

The radius of the core of Mercury is approximately 75% of that of the entire planet, which is a much larger fraction of the planet than for Earth. Like Earth, Mercury has a core that is at least partially liquid. However, unlike Earth, the size of the solid inner core is not known. Figure courtesy of NASA and APL.

As discussed for Questions 1 and 3, Mercury has a very large iron-rich core and a global magnetic field; this information was first gathered by the Mariner 10 flybys. More recently, Earth-based radar observations of Mercury have also determined that at least a portion of the large metal core is still liquid. Having at least a partially molten core means that a very small but detectable variation in the spin rate of Mercury has a larger amplitude because of decoupling between the solid mantle and the liquid core. Knowing that the core has not completely solidified, even as Mercury has cooled over billions of years since its formation, places important constraints on the planet's thermal history, evolution, and core composition.

However, these constraints are limited because of the low precision of current information on Mercury's gravity field from the Mariner 10 and MESSENGER flybys. Fundamental questions about Mercury's core remain to be explored, such as its composition. A core of pure iron would be completely solid today, due to the high melting point of iron. However, if other elements, such as sulfur, are also present in Mercury's core, even at a level of only a few percent, the melting point is lowered considerably, allowing Mercury's core to remain at least partially molten as the planet cooled. Constraining the composition of the core is intimately tied to understanding what fraction of the core is liquid and what fraction has solidified. Is there just a very thin layer of liquid over a mostly solid core or is the core completely molten? Addressing questions such as these can also provide insight into the current thermal state of Mercury's interior, which is very valuable information for determining the evolution of the planet.

Using the laser altimeter in orbit, MESSENGER will verify the presence of a liquid outer core by measuring Mercury's libration. Libration is the slow, 88-day wobble of the planet about its rotational axis. The libration of the rocky outer part of the planet will be twice as large if it is floating on a liquid outer core than if it is frozen to a solid core. By radio tracking of the spacecraft in orbit, MESSENGER will also determine the gravity field with much better precision than can be accomplished during flybys. The libration experiment, when combined with improved measurements of the gravity field, will provide information on the size and structure of the core.

« Back to Why Mercury Main Page

   Top  | Contacts
© 1999-2015 by JHU/APL