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Abstract—MErcury Surface, Space ENvironment, 
GEochemistry, and Ranging (MESSENGER) is a NASA 
Discovery mission to study the planet Mercury. Launched 
in August 2004, it will perform one more flyby of Venus 
and three flybys of Mercury, followed by Mercury orbit 
insertion in 2011 for a one-year science-gathering mission. 
Throughout the mission, MESSENGER will use seven 
instruments to collect data about key characteristics of the 
planet to understand Mercury and the formation of the inner 
solar system. 1 2

 
With the requirement that MESSENGER operate at 
distances of tens of millions of kilometers from Earth, the 
flight software team at The Johns Hopkins University 
Applied Physics Laboratory (JHU/APL) designed a system 
software architecture to work within the confines of deep 
space as well as the hostile near-Sun environment of 
Mercury. The constraints imposed by this setting include 
limited on-board storage, low bandwidth, long light-time 
delays, and intermittent connectivity with Earth.  The team 
systematically targeted these problem areas by introducing 
various technologies: (1) an on-board file system using 
configurable telemetry storage to address the limited on-
board storage, (2) a prioritized naming scheme for the file 
system providing for optimal use of low bandwidth to 
ensure that critical data are received by the ground as 
required, (3) use of the Consultative Committee for Space 
Data Systems (CCSDS) File Delivery Protocol (CFDP) 
standard for reliable file data delivery, to address the light 
time delays and intermittent connectivity encountered by 
MESSENGER, and (4) a configurable and robust autonomy 
and safing system to protect the spacecraft while it is out of 
contact with Earth. 
 
The MESSENGER guidance and control (G&C) software is 
a key component in all phases of the mission. This highly 
complex set of algorithms maintains spacecraft attitude, 
manages spacecraft momentum, executes deep-space 
propulsive maneuvers, controls the solar arrays for 
optimized pointing to the Sun, manages spacecraft thermal 
environment by ensuring the sunshade always faces the 
Sun, and, finally, enables a host of pointing options and 
instrument pointing control in support of science operations. 
All of this complexity was modeled in Mathwork’s 
SIMULINK environment and was ultimately auto-generated 
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into flight code using Real Time Workshop (RTW). In 
support of this code were over one thousand different 
parameters as well as complex and extensive management 
of on-board ephemerides. Additionally, the G&C software 
was co-resident with the command and data handling 
software, consuming approximately slightly more than half 
of processor bandwidth and memory. 
 
This paper first provides a high-level overview of the 
MESSENGER flight computer system including both the 
overall hardware and software architectures. Following 
these descriptions is a detailed review of the specific new 
technology introduced to address the constraints and 
limitations of operating in the deep space and Mercury 
environments. The paper concludes with an analysis of the 
performance of the software over MESSENGER’s first year 
in space including details of G&C operations during 
mission milestones relating to deep space maneuvers and 
the uploading of upgraded versions of the flight software. 
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1. INTRODUCTION 

MErcury, Surface, Space ENvironment, GEochemistry, and 
Ranging (MESSENGER) is a NASA Discovery mission to 
study the planet Mercury.  MESSENGER was launched on 
August 3, 2004, flew by the Earth a year later in 2005 with 
a resultant image shown in Figure 1, and swung by Venus 
on October 24, 2006. The remaining major events of the 
mission include one more flyby of Venus, three flybys of 
Mercury, and, finally, insertion into Mercury orbit in March 
2011 for a one-year science-gathering mission [1]. 
Throughout all phases of the mission, MESSENGER will 
use seven instruments to collect data about key 
characteristics of the planet to further understand Mercury 
and the formation of the inner solar system [2]. As part of 



the system software developed by The Johns Hopkins 
University Applied Physics Laboratory (JHU/APL), 
MESSENGER accommodates the constraints placed on it 
by operating in a deep space mission environment.  
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The MESSENGER flight software runs on flight electronics 
called the integrated electronics module (IEM). The IEM 
has two RAD6000 processors: the main processor (MP) and 
the fault protection processor (FPP). The MP is responsible 
for both command and data handling (C&DH) and guidance 
and control (G&C).  The MP has 8 MB of RAM storage, 
and it communicates with a 1-GB solid-state recorder (SSR) 
via the peripheral component interconnect (PCI) backplane. 
The application software runs over the VxWorks operating 
system developed by Wind River, Inc.   

Figure 2 shows MESSENGER instrument data flow. The 
MESSENGER flight computer collects data from several 
instruments depicted in blue including the MESSENGER 
Dual Imaging System (MDIS), the Gamma-Ray and 
Neutron Spectrometer (GRNS), the Magnetometer (MAG), 
the Mercury Atmospheric and Surface Composition 
Spectrometer (MASCS), the Energetic Particle and Plasma 
Spectrometer (EPPS), and the X-Ray Spectrometer (XRS) 
[3]. With the exception of MDIS, instruments flow their 
data in the form of Consultative Committee for Space Data 
Systems (CCSDS) data packets through the Data Processing 
Unit (DPU) shown in green and then across the 1553 bus to 
the MP.  In the case of MDIS, data flow directly to the IEM 
via a high-speed interface. Image segments are collected in 
a buffer within the IEM and then transferred via Direct 
Memory Access (DMA) to the SSR depicted in yellow.  
Images are compressed when necessary and downlinked to 
the ground via CFDP.   

 

Figure 1 – Earth from MESSENGER, August 2005 

2. CONSIDERATIONS FOR A DEEP SPACE MISSION 

In the early days of defining the MESSENGER spacecraft 
architecture and mission design, several unique aspects of 
the mission became key drivers that greatly influenced 
flight software design choices: 

! As a deep space mission, MESSENGER has much 
lower communication data rates than are typical with 
Earth-orbiting spacecraft. The communication rate can 
range from 10 bps to 104 kbps with round-trip light-
time delays as long as 24 minutes. The low downlink 
data rate, combined with an analysis of science data 
collection while in orbit around Mercury, resulted in 
selecting an SSR that could store 1 GB of data. 

! Storage of images taken by MDIS, while in orbit at 

 

 
Figure 2 – MESSENGER instrument data flow with corresponding mirrored CFDP and file storage 
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Mercury, would be a major challenge. Because of the 
low downlink rates coupled with an image acquisition 
rate of 3.2 Mbps, images would have to be stored while 
close to Mercury, and transmitted to Earth at a later 
time. To conserve SSR space and downlink bandwidth, 
images that are initially stored on the SSR in 
uncompressed format must be compressed for longer-
term storage. 

! MESSENGER is a 3-axis stabilized spacecraft with 
pointing controlled by G&C software that operates 
reaction wheels and a complex propulsion system. The 
spacecraft sunshade must at all times be kept pointing 
to the Sun to ensure that delicate spacecraft electronics 
are protected from damaging solar heat. While 
temperatures on the face of the sunshade can reach 350o 
C, the shaded electronics remain at room temperature 
and even require heaters. Should G&C fail to keep the 
spacecraft Sun-pointed for any longer than 30 min, the 
spacecraft could be lost due to overheated electronics 
and solar arrays that fail to charge the battery.  

! At times during the multi-year journey to reach 
Mercury, solar conjunctions will block the Earth from 
having communication contact with the spacecraft. 
These blackout periods can be as long as 40 days. 
Software must support a rule-based autonomy system 
that could monitor for faults and take corrective action, 
such as switching to the backup unit for a specific 
subsystem on the highly redundant spacecraft, without 
waiting for ground intervention. Furthermore, G&C 
software would need to be able to operate thrusters 
autonomously should some anomaly cause a Sun-
pointing violation. 

These key features of the MESSENGER mission led to 
several software design decisions that were new for a 
JHU/APL spacecraft mission.  

On-board file system and CCSDS File Delivery Protocol 

Given the desire to maximize the return of science data and 
the need for flight software to store images and compress 
them at a later time, it was decided to manage the SSR using 
a file system. This allowed the SSR to be treated as if it 
were a virtual disk drive, enabling the software to read files 
containing uncompressed images, apply an integer wavelet 
compression algorithm, and store the smaller file back to the 
SSR. The file system allowed multiple usages of the same 
memory areas depending on what was needed. A given area 
could easily be used at one time for raw science data storage 
and at another time for compressed image storage or SC 
housekeeping and engineering data storage.   

Another innovation was the integration of a newly emerged 
standard for the transmission of file data, the CCSDS File 
Delivery Protocol (CFDP) [4]. This standard is essentially 
an “FTP in space” process that transfers a file between the 

spacecraft and the ground system using a guaranteed data 
delivery protocol with handshaking between the flight and 
ground CFDP clients to retransmit pieces of a file lost due 
to data dropouts. MESSENGER became the first U.S. 
mission to launch with CFDP. The ability for software to 
automatically retransmit missing data rather than entire 
images or files maximizes the downlink of science data. 
Prior JHU/APL missions had treated data storage devices as 
virtual tape recorders using ground commands to 
manipulate read and write pointers. 

Automated File Playback 

To simplify the management of the flight file system and 
CFDP, MESSENGER flight software implements an 
automatic SSR playback process. A prioritized directory 
structure was created for the storage of science and 
engineering files. This directory structure was organized 
according to downlink priority. The software “walks” 
through directories in priority order, continuously 
transmitting files of data. If necessary, these priorities can 
be overridden. At the beginning of a data transmission 
contact with Earth, the playback manager is enabled by 
command and begins to transmit the data of highest priority. 
The use of CFDP, the file system, and the priority directory 
structure solved another concern related to the long periods 
of time the spacecraft would be out of contact with Earth. 
During those times, large amounts of engineering data are 
stored in low-priority directories. Should an anomaly occur 
while out of contact, the ground team can later promote 
those files to a higher priority and downlink them to support 
analysis activities. But when everything is nominal, CFDP 
directives can be sent to the spacecraft to delete the 
unneeded contingency files, freeing valuable SSR space and 
downlink bandwidth for the science data. 

Autonomy 

Given the critical requirement to maintain a Sun-pointing 
attitude, and the fact that there would be long periods of 
time when MESSENGER would have no Earth contact, a 
sophisticated autonomy system was designed into the flight 
software. Relevant engineering telemetry data are collected 
each second and stored in an onboard data collection buffer 
(DCB). Autonomy rules, expressed in reverse polish 
notation, are uploaded to the spacecraft. Each rule has 
conditional logic in the premise to check data values in the 
DCB. A rule evaluation engine in the flight software 
processes each rule every second; for each rule that 
evaluates “TRUE,” a corresponding stored command 
sequence is executed to take corrective action. This rule 
capability allows the autonomy system to respond to faults 
and take actions such as switching to the backup flight 
processor, switching to a backup star tracker, turning off 
power loads if a low voltage condition arises, and so on. 

Guidance and Control 

MESSENGER flight software includes sophisticated G&C 
attitude estimation and attitude control algorithms. The 
software not only maintains a 3-axis stabilized Sun-pointing 



attitude, but it also supports a number of pointing options to 
facilitate instrument operations while in orbit around 
Mercury, such as a limb-scanning function to support 
acquiring image mosaics from the MDIS instrument. G&C 
also manages the propulsion system and the flow of fuel in 
tanks to support thruster maneuvers, which can be 
commanded from ground control or can take place 
autonomously in the event of a Sun-pointing violation or a 
need to reduce momentum to slow down the reaction 
wheels. G&C also controls rotation of the solar panels to 
optimize power and keep the panels within a designated 
temperature range, controls a phased array antenna to keep 
it pointing at Earth, and controls an optical pivot platform in 
the MDIS instrument.  

The remainder of this paper will discuss more details about 
the key features of the MESSENGER flight software. 

3. ON-BOARD FILE SYSTEM 

MESSENGER data are stored in files onboard the 
spacecraft [5]. This differs from past JHU/APL missions 
where data are stored on the SSR in raw partitions which 
are managed via a custom method of data storage. With low 
bandwidth and long time delays, a file system facilitates a 
more autonomous method of data management. 

As described previously, onboard data flow for 
MESSENGER starts at the instrument and ends at the SSR. 
 The file system processing software is configured by 
mission operations to store telemetry packets that are 
received from the instruments, as well as from internal MP 
tasks, into files that are contained in a prioritized directory 
shown in Figure 3. When commanded, the flight software 

steps through this directory structure and starts downlinking 
files in order of time received. This directory structure 
allows mission operations personnel to place important 
information in higher priority directories to ensure the data 
will be returned expeditiously. As the data tree is traversed, 
it becomes less and less likely that a particular file will ever 
be downlinked due to bandwidth constraints. As a result, 
low-priority engineering data are typically placed in the 
lowest priority P9 directory and deleted on a periodic basis. 
 If an anomaly occurs, the software provides the ability to 
move files to higher priority directories to cause the flight 
software to reevaluate the importance of those data. 

4. CCSDS DELIVERY FILE PROTOCOL 

CCSDS is a standards body consisting of the agencies and 
organizations from space faring countries worldwide. The 
committee members develop and discuss recommendations 
in order to create a standard set of protocols and operations 
across missions and across agencies. As part of this effort, 
CCSDS developed the CCSDS File Delivery Protocol to 
provide a method for transferring files between two points 
in a space network. 

In the course of developing the MESSENGER flight 
software, the MESSENGER team concluded that the 
spacecraft’s flight profile required a standard method for 
delivering files from the spacecraft to the Mission 
Operations Center (MOC) at JHU/APL. The team evaluated 
CFDP, but at that time the protocol was still in its infancy 
and was deemed premature for flight. The flight software 
developers took a different track to create a customized 
protocol for file transfer, but after an initial attempt, they 

 
Figure 3 – MESSENGER file system downlink directory layout provides for prioritized downlinking 
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realized that the end result was going to be remarkably 
similar to CFDP and, as result, turned back to CFDP as a 
solution for this problem. 

CFDP is configured in multiple ways. It can use a reliable 
method of file system communication where all data are 
guaranteed to be transmitted, or it can perform a “best 
effort” where data delivery is not assured.  CFDP is tuned to 
the operational environment, whether that is low Earth orbit 
or deep space.  

In the case of MESSENGER, the MESSENGER software 
team selected a deep space configuration, and the following 
example, diagramed in Figure 4, is illustrative of a typical 
CFDP transaction. First, a transaction is started either via 
command or the aforementioned autonomous downlink 
capability. Next, initial information concerning the file is 
transmitted in a metadata protocol data unit (PDU).  A PDU 
is the common language between CFDP entities with a 
metadata PDU being a particular kind. Next, the file is 
divided into smaller segments and these file pieces are 
transmitted in file data units (FDUs).  This continues until 
an end of file (EOF) PDU is communicated to the ground 
system indicating the file has been completely sent.  During 
this time, the ground software at the MESSENGER MOC is 
accumulating the FDUs and reproducing the file local to the 
MESSENGER operations team and scientists. Along with 
creating the file, the CFDP ground software is also 
performing an accounting procedure to ensure that all pieces 

of the file have been received. If any are missing a negative 
acknowledgement (NAK) is transmitted back to the 
spacecraft.  The NAK contains information on which pieces 
of the file are currently missing in the received file. Once 
the flight software receives a NAK, it retransmits the 
missing piece of a file and, when that is received on the 
ground, the MOC software responds with a finished 
indicator (FIN). MESSENGER receives this transmission, 
acknowledges to the ground that it did so, and then closes 
the transaction. 

The keys to CFDP in the deep space domain are the 
handshake elements and their corresponding timers. CFDP 
does not require a large amount of protocol handshaking, 
unlike typical terrestrial file system schemes. This is 
necessary in the deep space since a single handshake (such 
as a sender asking a receiver if it is ready to receive a file 
and the receiver responding that it is) costs one round trip 
light time. This is insignificant near Earth where that round 
trip light time can be measured in milliseconds, but in deep 
space the round trip can be minutes or even hours. 
Additionally, CFDP as configured for MESSENGER 
assumes an unreliable link between the two elements in the 
space network. This adds a series of timers at three points in 
the data transmission. The first is started when the EOF is 
sent to the ground, the second when any NAKs are sent, and 
the third when the FIN is sent. There is also an overall 
inactivity timer which ensures that the system as a whole is 
still functioning. These timers accommodate a typical noisy 
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Figure 4 – Typical CFDP transaction provides reliable transmission of spacecraft file data 
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deep space link in that the EOFs, NAKs, and FINs are 
resent if the CFDP entity realizes that it has never received a 
response to the respective transmissions.   

The MESSENGER software system uses two different 
implementations of CFDP.  The first is a JHU/APL custom 
implementation on the spacecraft that meets the needs of a 
processor- and memory-constrained mission [6].  The 
second is for the ground software and is built around a 
CFDP implementation developed by the NASA Jet 
Propulsion Laboratory (JPL) [7].  The use of the JPL 
ground software is made possible because CFDP is an 
international standard.  This type of software reuse would 
have been impossible with a closed, proprietary file transfer 
protocol. 

The addition of CFDP has enabled the reliable transfer of 
thousands of files, but the introduction of the protocol was 
not without pitfalls (although none were directly a result of 
the protocol itself). Two primary lessons learned have been 
derived from the experience of operating CFDP. The first is 
to ensure that the default timer settings are sufficient for 
initial operations that are typically not nominal. During the 
initial days of the MESSENGER mission, there were some 
hiccups that resulted in prolonged transaction times, which 
resulted in some files not being properly delivered to the 
ground system. Since extra bandwidth was available during 
this period, some laxness in the timer settings would have 
allowed for the data to be properly delivered. The second 
main lesson learned was to have a CFDP engineer 
responsible for overseeing the closed-loop operation of 
CFDP.     

5. AUTONOMY 

The autonomy engine software runs on the Main Processor 
(MP) as well as the Fault Protection Processors (FPP).  The 
FPPs are loaded with the rules responsible for the spacecraft 
safety and can support up to 512 rules. To date, the FPPs 
have been loaded with over 200 rules, which monitor 
telemetry to perform safing operations such as mode 
demotion, hardware switching, and power monitoring. The 
FPP rule premises also use ground configurable parameters 
such as mission phase to allow specific rules to be enabled 
or disabled during certain times in the mission.  The MP 
contains rules that perform spacecraft maintenance 
sequences and can support up to 256 rules. These 
maintenance rules include routine SSR file operations as 
well as routine RF hardware reconfiguration sequences.   

Each FPP executes identical application code that supports a 
command and telemetry interface to the MP. The main 
purposes of each FPP are to perform fault detection and to 
execute the appropriate responses. Each FPP implements 
health and safety rules that operate on data collected from 
the 1553 data bus, including a state message transmitted by 

the primary MP. Each FPP also serves as a 1553 bus 
monitor to collect spacecraft data that can be monitored by 
autonomy rules. A triggered rule can dispatch a command 
or series of commands via the primary MP to correct faults. 
The FPPs also have a custom serial interface to the power 
distribution units to receive critical status or send special 
commands if the loss of 1553 bus communications or a 
failed MP is detected. This interface to the power 
distribution unit allows the FPPs to take independent action 
such as resetting the MP or swapping the current MP bus 
controller. 

6. GUIDANCE AND CONTROL 

As stated in the introduction, the G&C software co-resides 
with the C&DH software in the RAD6000 computer.  In 
fact, the G&C comprises approximately 50% of the linked 
object code and requires approximately 30% of the CPU 
bandwidth. In short, it is a major component of the flight 
software design as it exists in MESSENGER.  

If there was any one innovation that reduced the 
development schedule, mission risk, and also cost of the 
MESSENGER flight software it is that the G&C “truth” 
dynamic and environmental algorithms, as well as the flight 
control, estimation, and guidance functions, were all 
modeled and tested within MathWorks’ Simulink product. 
Simulink, as described by MathWorks, is a “platform for the 
multi-domain simulation and model-based design for 
dynamic systems” [8]. It is implemented as an interactive, 
graphical, desk-top environment comprised of a set of 
customizable “block” libraries dragged and dropped into the 
workspace by the analyst who uses them to model the 
environment and his or her control strategies. The main 
strength offered by Simulink is the flexibility it offers – 
inputs, outputs, parameters, and algorithms can all be 
readily modified at a symbolic level. In other words, it is not 
necessary to modify any extant C-code and all of the 
ramifications of that process just to make a relatively simple 
change. Another real advantage is the modeling of the 
spacecraft post-launch. Environmental or dynamic models 
can be modified at the workstation level, measured data or 
observed events duplicated, and a problem or observation 
quickly explained without invoking the very expensive and 
often time-consuming hardware-based simulations.  

Ultimately these symbolic but very real models are 
converted directly into ANSI-C code using another tool 
provided by MathWorks: Real Time Workshop (RTW). 
This process of converting the models into a form that can 
be ported and compiled and linked into flight or test-bed 
environments is called auto-generation, or auto-coding, and 
it is the key technology that makes it possible to convert the 
highly symbolic models  into “real world and real time” 
applications. But that’s not the end of the auto-coding 
process. There also exists a set of customized Target 
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Language Compiler (TLC) and Perl-based utilities that 
auto-code the G&C command and telemetry database and 
test scripts and test parameters, as well as customized 
“special purpose” interface functions.  The TLC utilities 
form part of the RTW build process and are invoked as part 
of that process. They are able to extract fundamental model 
characteristics during the RTW auto-generation process 
such as the epoch rate of the models, the number of distinct 
states, whether the models were multi or single tasking, and 
so on. In addition, they are responsible for the auto-
generation of so-called “wrapper” functions ultimately 
invoked by the Human-Generated Code (HGC) to initialize, 
check run time status, and then “step” or execute the 
models. In this way, the HGC does not need to know any of 
the details of the internal workings or structures of the auto-
generated models. (It should be noted here that MathWorks 
has subsequently released its Embedded Coder product, 
which offers similar “clean” interfaces for the control and 
management of the models.) 

The associated Perl-based auto-generation utilities are 
numerous and extensive in purpose, but their focus is in the 
auto-generation of the command data base comprised, 
primarily, of up to 1000 G&C parameters of differing types 
and sizes. Perl scripts perform further processing of the 
RTW auto-generated code. Commands and parameters are 
extracted, sorted, and formatted as required by the database. 
This arrangement provided the means of allowing any 
change to any parameter, whether it was an addition, 
removal, or a simple modification, to be modeled and 
verified within Simulink, the models re-auto-generated via 
RTW, the changes quickly and accurately extracted via the 
Perl scripts, and the command data base subsequently 
updated. What makes this process workable is a mnemonic 
naming convention for inputs, outputs, and parameters that 
originated at their creation within the Simulink Model. Post 
RTW, these named objects become part of the auto-coded c-
code which, in turn, allowed the Perl scripts to parse, sort 
and extract what was needed for the data base.. An example 
of this naming convention might be: 
GC_GYROPROP_FineScaleFactor - which “tells” the Perl-
based tools that the parameter is a flight (GC) parameter; it 
is part of the wider set of gyro properties (GYROPROP); 
and, specifically, it defines the so-called “fine scale factor” 
for the gyro.  

Primarily because MESSENGER is a deep space mission 
and a certain amount of simplification was required from a 
management perspective, parameters are further organized 
into so-called “parameter blocks.” From a G&C perspective, 
parameters with the same functional associations are 
grouped together and loaded or “committed” to the models 
at the same instant. As an example, all of the parameters 
associated with, say, the functional properties of the gyro 
became members of the GYROPROP parameter block. In 
the end, the 1000 or so individual parameters were 
organized into 100 parameter blocks with individual 
parameter blocks being managed as a single logical entity in 

that they are created, uploaded, verified, and stored in the 
on-board memory in the same way, using the same methods. 
In addition, methods were provided to load individual 
parameters but, in fact, were never used.  

Another Perl-based set of utilities which is parameter-
related, and which ultimately offered a great deal of 
flexibility and saved vast amounts of time, was the auto-
generation of G&C test and verification scripts. These 
scripts are first run at the workstation level and then, to 
ensure the fidelity of the test, executed with the same 
anticipated results in the hardware test bed, and often at the 
spacecraft level. The same mnemonic naming discipline 
allowed this to happen. Old tests could be run with new 
parameters. New tests could be easily developed and 
verified before scheduling expensive time on the spacecraft. 
And post-launch, this allowed the creation of the parameters 
necessary for early maneuvers and deployments. 

The Simulink models have the flexibility to execute in a so-
called multi-tasking configuration. For the G&C there is a 
50-Hz “control” task and a 1-Hz task that included the 
functionality of everything else required by the G&C - 
namely estimation, which includes a Kalman filter; 
guidance, which includes the ephemerides for the Sun, 
Earth, spacecraft, and target planet; solar array and antenna 
pointing logic; and a host of complex pointing modes and 
their associated short cuts derived from the on-board 
ephemeris. The ability to configure the Simulink models in 
a multi-tasking configuration significantly off-loads the 
CPU, making it possible to let the G&C run concurrently 
with the C&DH.  

The control task is a high-priority task that was measured to 
take approximately 5 ms out of each 20-ms time-slice – 
thereby requiring about 25% of the CPU bandwidth. The 
low-rate task executes once a second, starting sometime 
after the start of the second and ending sometime before the 
start of the next. The data exchange between the two tasks is 
managed either by the HGC or by so-called “rate transition” 
blocks within the Simulink models themselves. It is 
estimated that if all the G&C functionality were allocated to 
a single high-priority task, it would require close to 95% of 
the available CPU bandwidth. 

Lastly, one of the main requirements of a deep space 
mission providing extensive reconnaissance of a remote 
planet is the need for large volumes of Sun, Earth, and 
target planet ephemeris data which must be uploaded to the 
spacecraft on a weekly and sometimes on a daily basis. For 
MESSENGER this volume of data is estimated to be about 
48 kbytes of data per week in the form of Chebyshev 
polynomials. To off-load the stress this introduces to the 
C&DH macro and time-tagged command functions, the 
G&C included a so-called “ephemeris manager” that buffers 
the ephemeris data, verifies them, reports their status – how 
many spans are valid, how many are expired, etc. – and, 
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finally, provides the next valid Chebyshev to the G&C 
ephemeris models when requested to do so.  

7. SUMMARY 

The JHU/APL MESSENGER flight software team 
considered several characteristics in developing the flight 
software for the mission. These included low downlink 
rates, periods of limited or no communication, and long 
light time delays. Operating in deep space impacted the 
design of autonomy, data handling, and guidance and 
control. The software architecture outlined in this paper 
continues to operate nominally during MESSENGER’s 
third year in space.   
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