USE OF THE GROUND SUPPORT EQUIPMENT OPERATING SYSTEM (GSEOS)
SOFTWARE ON THE MESSENGER MISSION: A CASE STUDY

Thomas F. Hauck

GSE Software, Inc.
Marina del Rey, CA 90292
hauck@gseos.com

ABSTRACT

The need for low-cost, flexible, and maintainable
spacecraft ground systems is a common denominator
across most space programs. General requirements for
such software should emphasize reduction of risk and
cost across mission phases. The software package Ground
Support Equipment Operating System (GSEOS) was
designed to support the testing and integration of
instruments and small spacecraft and runs on the
Microsoft Windows® platform. The structure,
capabilities, and future direction of GSEOS are based on
reusability and cross-mission phase deployment. GSEOS
can be used for integration and test (I&T) as well as flight
operations with only small changes to the system
configuration. GSEOS uses the open-source
programming language Python as its scripting language.
Python’s flat learning curve facilitates a quick turn-
around time for the development of command scripts,
telemetry decoders, and test scripts. These attributes are
demonstrated with the case study of the MESSENGER
mission.

The MESSENGER (MErcury Surface, Space
ENvironment, GEochemistry, and Ranging) mission [1]
is a NASA Discovery program executed by The Johns
Hopkins University Applied Physics Laboratory
(JHU/APL). The science payload [2] consists of seven
instruments and redundant Data Processing Unit (DPU)
computers. The GSEOS-based MESSENGER
Instrument Ground Support Equipment (IGSE) design
supports instrument and DPU flight software
development, unit-level test, spacecraft integration, and
mission operations. A modular software design approach
facilitates code reuse across the instrument suite and a
broad range of test environments. The MESSENGER
IGSE software is partitioned into common and custom
modules; common modules contain methods and data
reused by all instruments, whereas instrument-specific
customizations are partitioned into separate modules
simplifying code maintenance. An object-oriented
command definition scheme allows rapid instrument
customization by external organizations with minimal
code development.

The MESSENGER Mission Operations Center (MOC)
utilizes a proprietary scripting language called Satellite
Test and Operations Language (STOL). The

Jeremiah V. Finnigan

The Johns Hopkins University Applied Physics Laboratory
Laurel, MD 20723

jerry.finnigan@jhuapl.edu

MESSENGER IGSE design incorporates STOL parsing
and execution capability, allowing early testing of flight
procedures and test script reuse. The similarity of Python
and STOL syntax yields a surprisingly simple
implementation.

The MESSENGER mission experience demonstrates that
the GSEOS platform is well suited for developing low-
cost IGSE. Partitioning of the IGSE software into
common and custom modules, coupled with object-
oriented design, results in effective code reuse.

1. INTRODUCTION

A common requirement of many spacecraft programs is
the need to test and operate the hardware prior to launch
and monitor its operation after launch. In recent years,
spacecraft and missions have grown more complex while
schedules have grown ever tighter. While such an
environment puts pressure on all aspects of a mission, it
is particularly difficult on the elements that support
ground test and operations, since these elements must be
in place to support early hardware development and yet
must last throughout the mission.

Typically, this capability has often been met by
developing and supporting several independent systems.
The first, often called bench checkout equipment (BCE),
is designed primarily to help engineers test the flight
hardware in a stand-alone configuration. Due to the need
to support early testing, the BCE’s capability is often
limited. Despite these limitations, and the fact that it is
not intended for long-term use, the BCE development
often requires significant resources to insure that the
hardware delivery is not imperiled.

A second system, developed in parallel with the BCE, is
intended primarily to support mission operations.
Because such systems can’t be fully checked until late in
the hardware development cycle, significant resources are
expended to run simulated hardware interface tests.
However, such tests are not a complete substitute for
testing with real hardware and invariably problems are
discovered in the hardware and/or software. A third
system may also be used solely to support system-level
testing during spacecraft integration. It shares problems



with both of the systems described above; it must be
available in time for system integration, but the
opportunity for testing may be limited. The hardware and
software elements that comprise these systems are often
completely different, not only from each other but from
those used on previous missions. This incompatibility
arises because the engineers responsible for the systems
have their own preferences and experiential backgrounds.
In addition, the rapid changes in the hardware and
software markets make such changes tempting, if not
necessary, to avoid obsolescence. Besides system
problems user interface problems arise due to the fact that
the end user has to be trained and able to operate various
disparate systems.

Such fragmentation and duplication of effort results in
higher costs, more schedule and technical risk, and
reduced capability. Clearly, the way to address these
problems is to utilize test systems that can be used
throughout a mission lifecycle and can be easily adapted
for use on several different missions (see Figure 1).

Assembly-Level Test Configuration

Flight Local
Instrument Spacecraft Storage
Interface
Emulation
Hardware Network
Interface

I
na

LM &
| System @—p» c\p

Core Interface

BIOS

Common GSEOS Elements

System -Level Test Configuration

Flight Spacecraft Local
Instrument Storage

Spacecraft
GSE

Mission Operations Configuration

d

LM &
@—p System @—p|

CMD
Core

BIOS
Network Interface

Interface

—

Common GSEOS Elements

Flight Spacecraft . Local

Instrument Storage
2
Ground
Station

Figure 1. Mission lifetime configurations

.

LM &
| System @—» c\p

BIOS
Core Interface

Network
Interface

o

Common GSEOS Elements

2. GSEOS ARCHITECTURE

The Ground Support Equipment Operating System
(GSEOS) tries to address the above mentioned challenges
and reduce overall system costs. The next paragraphs
give a general overview of the GSEOS system
architecture and design philosophy. GSEOS is strictly a
software product, but it is designed to interface easily to
the hardware layer that is necessary to simulate physical
spacecraft or system interfaces, such as the electrical and
logical interface between an experiment and the
spacecraft. If standard interfaces (MIL-STD-1553, RS-
232, RS-422) are used, commercially available hardware

can be purchased. The primary tasks of the GSEOS
software are to send commands to and receive data from
a subsystem, instrument, or spacecraft. Since telemetry
and command definitions change quite frequently,
especially in the beginning of the development phase,
GSEOS is built to accommodate those changes quickly.
For a flexible design data abstractions on the physical as
well as the logical level are required. In GSEOS the
physical data abstraction is done in the BIOS (Basic
Input/Output System) module. This module is
comparable to a device driver in an operating system and
is strictly hardware dependent.

The basic assumption about the logical data format is that
it is a repetitive data stream, which is true for most
spinning spacecrafts that produce telemetry data. The
data of interest are usually embedded in several protocol
layers. The job of the BIOS is to accept data from the
hardware and generate GSEOS data blocks. At this level
it doesn't really matter how the BIOS splits up the serial
data stream into data blocks. It is usually a good idea to
use a data unit that is inherent in the interface hardware
(e.g., the MIL-STD-1553 BIOS uses 32-word data
blocks).

Static Data Representation

Data blocks are one of the underlying architectural
concepts in GSEOS. Data are grouped in blocks that
usually represent logically related data. This
representation integrates especially well with the
repetitive, fixed-frequency nature of most telemetry
streams, but it also supports non-repetitive data streams
such as those found with higher-level, "bursty" data
products. GSEOS uses a block definition file that
describes the layout of every block on bit level. The
block description is similar to a "C" union construct and
allows us to assign a name to every data item in a data
block.

SubPacket

{

( Header[2], ,, 16;)
Length ,,, 9;
Sequence ,,, 4;
CF ,,,1;
SensorlD ,,, 2;

SubSector , , , 4;

* for all other data
DatalD ,,, 2;
DetectorlD , , , 2;

( Data8[980],,, 8;)
(ImgHdr ,,,32;)
¥

This naming of data items introduces a layer of
indirection in the access of data items that results in the



logical data independence. The data are referenced using
these defined data item names with a
BlockName.ItemName syntax throughout GSEOS. If,
for example, the layout of a particular data block
changes, only the block definition needs adjustment; the
rest of the system data displays and scripts remain
untouched.

As the instrument hardware and software evolve, the test
system can easily be extended to accommodate the new
functionality to be tested. From a users perspective, the
data blocks and data items are the entities used to access
the data. The user can interactively create display screens
and place data items in various numerical and graphical
formats on these screens. He can also record the data
blocks to a file and play them back at a later time, export
blocks over the network, write decoder scripts, etc.
Every aspect of GSEOS deals with data blocks and data
items; they are the backbone of the system. Although the
block description allows for a static description of the
data layout, it is not sufficient to model dynamic data.

Dynamic Data Representation

Due to bandwidth limitations, science data are usually
highly packed or compressed, and housekeeping data are
often sub-commutated. With only a static description of a
data block it is not possible to display properly this kind
of data packing. To model this dynamic layout we have
to introduce additional complexity. In GSEOS this is
done with a decoder script.

GSEOS historically used various proprietary, customized
macro languages for decoding, monitoring, and system
configuration tasks. This approach ran into scalability
problems as we encountered more complex instrument
and spacecraft requirements. All custom macro
languages were replaced by a common Python interpreter
that is integrated in GSEOS. Python scripts can access
all GSEOS system features such as data blocks and data
items as defined in the block definition file. This allows
for a very coherent configuration and programming
approach.

A decoder script written in Python can access all data
items as defined in the block definition. The general idea
behind the decoder script is to wait for a certain block (or
multiple blocks) to arrive, perform the necessary
algorithm on the data, and generate a new data block
(which must already be defined in the block definition
file). This new data block can then be used in the same
manner as all other data blocks in the system (e.g., in
displays, etc.). Most importantly, it can also be used in
another decoders as a source block to generate further
blocks, thus supporting a hierarchical approach to
processing data blocks using decoder scripts.

A simple example shows how raw telemetry blocks are
decoded into Status data when the application ID (ApID)
indicates Status data. The resulting status block is then
decoded further to generate a de-sub-commutated
housekeeping array.

# Generate 20 byte status block from TLM block
def fDecTLM(TLM):
if (TLM.Apld == STATUS_APID):
BlkStatus.Data[0:20] = TLM.Data[0:20]
BlkStatus.send() # Send status block

# Create decoder
oDec = Decoder.Decoder('TLM', fDecTLM, [Status])

#Register TLM Decoder on RawTLM arrival
RawTLM.Decoders.append(oDec)

This approach of decoding the instrument data leads to
high visibility and easy debugging of the instrument
hardware and software. It is easy to detect where the
decoding fails by examining the integrity of the data as
they are transformed through various levels of decoding.
All the data products created on this decoding path are
themselves only general data blocks and can be displayed
by the system. Again, this allows GSEOS to adapt to the
current development state of the instrument system and
leads to a layered structure by defining decoder scripts
together with block definitions and screen displays for
every protocol layer. Usually this happens naturally as
the complexity of the instrument evolves.

Layering the data products in this fashion allows
multiplexing of data blocks from different data streams
into common destination blocks.  For example, an
instrument may have a MIL-STD 1553 interface to a
spacecraft. During stand-alone bench checkout, GSEOS
may create 1553Raw Blocks from the data it receives via
a 1553 card in the PC. The system then uses decodes
these 1553Raw blocks into TLM blocks. During mission
operations, however, the ground segment may deliver
data to the PC in Standard Formatted Data Unit (SFDU)
format via a TCP/IP link. GSEOS might create SFDU
blocks, which would then be further decoded by a SFDU-
specific decoder into TLM blocks. In both cases, the
result is identical telemetry blocks, even though the input
formats are completely different. That means all the
displays and further decoding which is derived from the
TLM block can be reused without any change. This
feature is one of the reasons for GSEOS’ scalability.
Operators may become accustomed to certain screen
layouts and command interfaces and use them throughout
the system’s lifecycle. Another advantage is that it is
possible to switch instantly back to bench test
configuration for calibration purposes if the need arises.



Commanding

The system must also accept and process command
inputs. The same block structure utilized for telemetry
applies for commanding. GSEOS uses a dedicated
command block to pass commands within the system.

GSEOS offers several different command user interfaces.
Once defined, the instrument commands can be assigned
to buttons placed on display screens, invoked via a
hierarchical command menu (see Figure 2), or entered
through the command line editor. These methods all
generate the same command block that contains the
command to be issued. This architecture allows for easy
extension of the command user interface, remote
commanding (by sending a command string over the
network), or even recording a command session and
playing it back at a later time. Use of the pull-down
menus is particularly helpful, since it eliminates the
source of most errors during command generation and
allows casual users a simple, intuitive means of
interacting with the hardware.

*. Mimi [1] - Net

File Edit Draw Siyle Options

Dlsldl & B E

DESKTOPS SCREENS BATCHs Applications indow Hel
ower > Fmlimil el ] 23 1
s IT]a) ggltol = 811
PHA
IMCA, Bias
DFU LCalibrator
Tt /Mode
Contral
Cmds/Seq B
Thresholds

Figure 2. GSEOS Command Menu
GSEOS User Interface

One of the main design goals of GSEOS is its ability to
enable users to rapidly display the instrument data in
various formats. The displays can be easily created using
the built-in screen editor. The editor allows users to
"draw" telemetry data items, static text, and graphic
objects on a screen and modify their attributes. Some of
the options are binary, hex, decimal, integer, floating,
histogram, 2-D scatter plot, “stripchart”, etc. Colors and
fonts may likewise be modified to improve appearance
and legibility. All this can be done while the system is
running and receiving data. This feature is especially
useful to create screens "on the fly"; e.g., while
debugging the instrument data one can create specific
views of the data to get a better insight into the
instrument behavior.

Users will generally create different screens for different
aspects of the instrument (see the layering approach
above). Multiple screens can be arranged on a page to
provide useful views of the data on the desktop (see
Figure 3). These pages can also be grouped together and
saved as desktop files; tabs can be used to quickly access

the different pages on the desktop. Such groupings have
proven particularly useful when testing instruments with
multiple sensors; it also simplifies the task of rapidly
switching test configurations.

[ Apsserns it

Figulrz 3. GSEOS User Interface

Extensibility

An open system structure allows support of the various
instrument requirements. Usually all the common
decoding issues as well as more demanding tasks such as
image compression can easily be coded as a Python
script. However, if the performance should prove
insufficient, it is fairly easy to move code from Python to
C. Python was designed with extensibility in mind, so
critical parts can be coded in C and loaded from an
extension dynamically linked library (DLL). There are a
number of readily available off-the-shelf Python
modules; for example, use of an existing database module
would allow one to export data directly into a database.
Writing a BIOS module for custom hardware is done via
a Python extension module.

3. MESSENGER INSTRUMENT SUITE
ARCHITECTURE

As an example, consider the application of the GSEOS
platform to the development of the MESSENGER
mission Instrument Ground Support Equipment (IGSE).
The MESSENGER science payload consists of a suite of
seven instruments (see Figure 4). Each instrument
communicates with redundant Data Processing Unit
(DPU) computers through a pair of serial RS-422
interfaces. The DPU computers reformat instrument
telemetry packets and forward them to the Integrated
Electronics Module (IEM) computers for downlink.
Instrument commands that are uplinked to the IEM are
forwarded to the DPU via the 1553 bus. The DPU
forwards the command to the appropriate instrument
based on the Application ID (ApID) of the command
header. The MESSENGER instrument design
incorporates a common hardware element called an Event
Processing Unit (EPU). All EPUs support a common set
of commands and telemetry definitions to facilitate code



reuse amongst all instruments. In addition, each
instrument may define instrument-specific commands
and telemetry packets.

IEM 1 DPU 1 EPU1 | SENSOR
BC RT ><
L]
L]
.
MIL-STD- RS-422
IEM 2 | o5 o DPU 2 (Serial) EPU7 |SENSOR

Figure 4. MESSENGER Instrument Suite Architecture

4. MESSENGER IGSE REQUIREMENTS

The MESSENGER IGSE was required to support a wide

range of test configurations. In the instrument bench-top
test configuration (Figure 5a) the IGSE is referred to as a
DPU Emulator and interfaces to the flight instrument
through a signal conditioning electronics box that
provides a serial RS-422 command and telemetry
interface to the instrument. The DPU Emulator is
required to support a proprietary Instrument Transfer
Frame (ITF) communication protocol to the instrument.

Signal
DPU Emulator| Rs-232 |Conditioning| Rs-422
(GSEOS PC) | (Serial) & Power (Serial)
Supply
Power
Figure 5a. MESSENGER Instrument Benchtop Test Configuration
IEM MIL-STD-1553B DPU
(GSEOS PC) (UUT) (Serial) :
EPU7 [ SENSOR]

Figure 5b. MESSENGER DPU Benchtop Test Configuration

RS-422 Optical
Instrument

OCF MASTER | Tcp/iP | IEM Emulator |MiL-STD-
COMPUTER (GSEOS PC) | 1553B

Figure 5c. MESSENGER Optical Calibration Facility (OCF)
Test Configuration

TLM Monitor | TCP/IP Front
(GSEOS PC) moc End Spacecraft

Figure 5d. MESSENGER MOC Telemetry Monitor Configuration

In the DPU bench-top test configuration (Figure 5b) the
IGSE is referred to as an “IEM Emulator”. It interfaces
to the flight DPU hardware through a commercial off-the-
shelf (COTS) MIL-STD-1553 interface board, and is
required to support a proprietary Inter-processor Transfer
Frame (IPTF) communication protocol with the DPU.
The Optical Calibration Facility (OCF) test configuration
(Figure 5c¢) uses a variation of the IEM Emulator that can
act as a slave under the control of the OCF master
computer through a TCP/IP socket. The OCF master
computer may send commands to the optical instrument
and receive telemetry from the optical instrument through
the IEM Emulator acting as a slave unit. Finally, in the

Spacecraft Integration and Test (I&T) configuration
(Figure 5d) the DPU Emulator or IEM Emulator is
configured as a telemetry monitor, receiving telemetry
packets from the Mission Operations Center (MOC)
during I&T or mission operations.

5. MESSENGER IGSE SOFTWARE
ARCHITECTURE

The MESSENGER IGSE software design presented
several challenges, including rapid development of the 8
IGSE test sets, each being reconfigurable to support a
multitude of test configurations, and ensuring
compatibility and maintainability of custom code
developed by geographically separated teams. To meet
these challenges, the MESSENGER IGSE software
architecture incorporated modular code designed for
reuse, reconfiguration, and ease of software maintenance.
This approach is illustrated by the design of the IGSE
command processing mechanism (Figure 6). The high-
level command processing and routing features of the
IGSE were implemented in a GSEOS Python module
named ‘core.py’. All flavors of the IGSE start by loading
this module.

STOL OCF Master GUI Python
Emulator Computer Command Test Command
Module Interface Menu Scripts Sources

\
Each invokes the CMD_MAC() function with Command
Mnemonic, Arguments, and Macro mode

ITF I!I'F Serial
. . —» IIFto
CMD_M!AC() "6‘\@“‘ Builder Frames Instrument
function cmg oY
Oject CMD oR
Router
mnemonic : function y
(4

MIL-STD-
%,

/
(A IPTF IPTF _ | 1553
CMD Builder Frames IIF to
Dictionary DPU

4 core module
I 2 I Instrument 1 2 ii
Instrument 1
Custom Common
Command Command
Definitions Wrappers

Tools I Common
Command & Command

Argument Definitions
Classes /

Figure 6. MESSENGER IGSE SW Command Processing Architecture

Depending on the initialization parameters specified in
the configuration files gseos.ini and startup.cpb, the core
module imports command dictionaries defined in various
common and custom folders and appends them to the
core command dictionary. The central element of the
core module is the CMD_MAC() function that takes the
command mnemonic and the command arguments
(specified either as integers or as mnemonics) as inputs,



builds the corresponding instrument command, and sends
it to the command router. The command router forwards
the command to the appropriate formatting module
(either ITF of IPTF) depending on the IGSE
configuration. The command dictionary (a Python hash
table) in the core module uses the instrument command
mnemonic (represented as a string) as the key, which is
mapped by the hash table to a reference to the function
that builds the corresponding command. When the
CMD_MAC() function is invoked, it finds the command-
building function by using the supplied cmd_mnemonic
to access the command dictionary and passes the
command arguments to this function. If cmd_mnemonic
is not in the dictionary key list, an exception is raised
containing a description of the error

The command-building functions that are referenced in
the core command dictionary must meet the following
requirements: they must verify the correct number and
type of arguments received, verify that all arguments are
within the valid range, and raise an exception to the
calling method with a description of the error if any of
the command arguments are invalid. Otherwise the
function must build and return a ‘cmd’ object to the
calling method. The cmd object includes a data member
that defines the byte-tuple representation of the
command. (Definition: byte-tuple — a tuple of integer
values, each value in the range of 0x00 through OxFF.)
Thus the core module’s command dictionary, along with
the requirements imposed on the command-building
functions referenced in this dictionary, effectively
decouple the high-level processing and routing of
commands in the core module from the lower-level
implementation details of the command-building
functions.

The cmd class is one of four classes that are used for
command definition and processing within the
MESSENGER IGSE (see Figure 7). The cmd class
encapsulates all of the data related to an instrument
command including the byte-tuple representation of the
command, the STOL string invocation that represents the
command, the mission elapsed time (MET) when the
command was created, the local time when the command
was created, and a text description of the command.

cmdBuilder e cmd
string mnemonic " [tuple  byte_tuple
sting ~ description L tuple  STOL_tuple
it opcode - bool  cksum
e "
tuple  fields o string ~ description
argBuilder vod _int_( |}~ 5‘{‘"9 ;g"“e
P —— d  buildCmd() n
string mnemonic C"‘d ¥
string  description emd  wrap_cmd() void  _init_()
int  length void _print() string  getSTOLString()

tuple ranges string  getByteString()

dict  argDict void  setMET()

dict  arginvDict void  setPCTime()

| — R ar void  setMnemonic()
void _init_() Uy 9 void  setMacroBit()
arg  buildArg() -1 tuple  byte_tuple void  setLengthField()
void  print() string  STOL_str void  setChecksum()

it getMacroBit()

void  setMacroKeyword()

void  finish()

void _init_()

Figue 7. Command Definition and Processing Classes

A cmdBuilder class that encapsulates all of the data and
methods required for defining and processing an
instrument command simplifies construction of the
command functions. A related class is the argBuilder
class, which encapsulates the definition and processing of
a single argument field of a command. The buildArg()
method of this class accepts either string or integer-
valued inputs and determines if the input is either a valid
mnemonic string or an integer within the allowed range.
If an error is detected, the argBuilder.buildArg() method
raises an exception with a description of the error.
Otherwise it returns an arg object.

The arg class encapsulates the description of a single
argument field of a command. It includes data members
that describe the byte-tuple representation of the
argument field plus the STOL string representation of the
argument (either the mnemonic corresponding to that
value or the string representation of the value if no
mnemonic exists).

The cmdBuilder class constructor requires a list of
parameters that defines the command mnemonic, the
command description, the opcode, and a list of zero or
more argBuilder objects that represent the argument
fields of the command. The cmdBuilder.buildCmd()
method is the command-building function that is
referenced in the core module command dictionary. It
accepts command arguments as input and builds and
returns the corresponding cmd object (if no input errors
are detected). It verifies that the correct number of
arguments are received and then passes each argument to
the buildArg() method of each corresponding argBuilder
object stored in the cmdBuilder object’s ‘fields’ tuple.
The buildCmd() method builds the byte-tuple
representation of the command by concatenating the
byte-tuple representation of each argument field returned
by the argBuilder.buildArg() method invocations and
adding the appropriate command header prefix and
checksum suffix. The resulting cmd object is returned to
the invoking routine (the CMD_MAC() method in this
case). In this way, the details of the command and
argument processing are pushed to the lowest level of the
call-chain, encapsulating the details of this processing in
lower-level classes. Higher-level modules such as ‘core’
and the STOL Emulator are decoupled from the details of
the command and argument processing, thus facilitating
future code reuse.

The design of the instruments, based on a common EPU
hardware and software design, facilitated the reuse of
code in the IGSE. A common set of commands was
required to be supported by all of the instruments. This
common set of commands is implemented once as a set
of generic commands that can be customized for each
instrument using a wrapper function that specifies the
command mnemonic and destination code to supply in



the command. Thus all common commands are defined
in one module and reused for each instrument DPU
flavor. A change to a common command requires
updating the command definition in only one place.

Instrument custom commands are implemented in
separate modules contained in an instrument-specific
folder. This partitioning was performed to simplify code
maintenance. Common commands and the required
wrapper functions for each instrument were developed
and maintained in the common folder by the JHU/APL
IGSE development team in Laurel, MD. External
development teams in Greenbelt, MD, and Boulder, CO,
created and maintained the definition of instrument-
specific custom commands for two of the instruments.
Partitioning the code into separate common and custom
folders allowed each team to update/modify their
command definitions without the need to merge the
contents of individual files. On startup, the core module
imports two command dictionaries for each instrument —
one from the common folder that contains the common
commands, and one from the instrument specific folder
that contains the instrument-specific commands. The
IEM Emulator was required to be able to support
instrument commanding for all of the instruments
simultaneously, so it imports both of these command
dictionaries for all instruments. The DPU Emulator
flavors load the custom and common command
dictionaries only for a particular instrument.

6. STOL EMULATOR

The MESSENGER spacecraft uses a version of the
Satellite Test and Operations Language (STOL), a
programming language to control and verify system
operation. It is desirable to be able to develop and
execute these STOL scripts directly within the GSEOS
test environment. This capability will help migrating
command scripts from I&T to flight operations and will
allow for the option of developing and testing those
scripts in a simulated environment before integrating
them into the ground system.

The STOL Language

The STOL language is a simple procedural, loosely
typed, scripting language. It supports integer, real,
character, and time formats with no type checking at
compile time and uses a coercion mechanism to map the
types appropriately. Basic arithmetic and mathematical
functions as well as conversion functions for telemetry
points are available. STOL allows the use of local and
global variables, which need to be declared before use.
Basic flow control statements such as:

IF... THEN...ELSE.. . ENFIF
DO WHILE... ENDDO

are supported. The GOTO statement is supported as well.
Procedure calls are available and invoke a new script. An
interesting concept is Synchronous Telemetry Access.
The following statements add telemetry points to a frame
list and execute a procedure on the arrival of a telemetry
point:

Frame Add Pointl Procedurel
Frame Add Point2 Procedure2
Frame Add Point3 Procedure3
Frame Process

This arrangement facilitates the synchronous handling of
asynchronous telemetry events and therefore a procedural
approach for writing closed-loop test scripts.

The Python Language

Python is an interpreted, object-oriented, high-level
programming language with dynamic semantics. It
facilitates high-level built-in data structures, combined
with dynamic typing and dynamic binding. Python's
simple, easy-to-learn syntax emphasizes readability and
therefore reduces the cost of program maintenance.
Python supports modules and packages, which
encourages program modularity and code reuse.

Implementing STOL with Python

The STOL emulator started out as a simple text
preprocessor. We wrote our STOL scripts and embedded
Python code in STOL comments. This Python code more
or less performed the same functions as the STOL code.
At this point it was the job of the engineer to write the
appropriate Python code to simulate what the STOL code
was intended to do. The preprocessor ignored all STOL
statements and extracted the embedded Python
commands and executed them. There are a couple of
drawbacks with this approach. First, the code gets
duplicated as STOL with Python code in comments,
which makes readability suffer. Second, the appropriate
Python code needs to be written, which requires
knowledge of STOL and Python, as well as the GSEOS-
specific extensions. Third, the code needs to be kept in
sync manually. It quickly became obvious that a more
integrated solution was needed. The goal was to interpret
the STOL code and to execute it within GSEOS to solve
all the aforementioned problems. Since we already started
with generating Python code for the STOL procedures (in
a manual way) we decided to use Python as the back-end
language, that is, the STOL emulator takes STOL code,
translates it into Python code, and executes it within
GSEOS. We found that most STOL statements and
constructs resemble those of Python. This made the
translation process straightforward, namely a simple
lookup table that converts STOL keywords into Python
keywords where appropriate. This approach covered



about 80% of the STOL syntax. However, there are some
STOL constructs that require more attention, including
implementation of the unstructured GOTO statement,
synchronous telemetry access, and procedure calls. The
following sections address these challenges and how we
implemented them.

GOTO Statements

Python is a structured programming language and does
not provide a GOTO statement. The challenge is to
implement the GOTO statement with only structured
flow control mechanisms. We chose to model the STOL
GOTO statement with Python exceptions. During the
compile phase we generate Python code that raises the
STOLGoto exception and passes the target as exception
arguments. The exception is caught at the end of the
procedure and transfers control to the beginning. Now
the problem is to move to the proper position within the
generated code. There is no direct way of accomplishing
this, however. We decided to prefix every possible
GOTO target (the LABEL statement) with some
conditional code to check for the target arguments to
match. This way the code falls through until it finds the
proper GOTO target and resumes execution there.

Synchronous Telemetry Access

GSEOS implements a class Sequencer that allows the
event driven nature of block arrivals to be addressed with
a sequential programming model. This makes writing
closed-loop test scripts simple and easy to read and
maintain. STOL’s FRAME processing was implemented
using GSEOS sequencers.

Procedure Calls

STOL procedures are separate STOL scripts that can be
invoked with the START directive or with a FRAME
PROCESS statement. Parameters can be passed either by
position or by keyword. For our implementation a STOL
procedure invocation looks just like starting a new STOL
script. Procedure calls are implemented recursively by
instantiating a new instance of the STOL emulator class,
since we hold all global STOL variables in the Python
global namespace and all local STOL variables local to
the specific STOL emulator instance.

Graphical Front-end

The STOL emulator interacts with a graphical user
interface to display the source code during execution as
well as giving the operator the opportunity to start, stop,
pause, and skip wait statements. This is a GSEOS
extension module written in C# using Microsoft’s .NET
framework.

Limitations

Strict error checking proved difficult. If valid Python
statements that are not valid STOL code are entered, the
script will run fine in GSEOS and fail on the spacecraft.
In general errors are caught as Python exceptions and
have to be translated into a meaningful STOL error. Due
to STOL’s simplicity, sophisticated error checking is not
of utmost importance. Implementing STOL is easy
where the functionalities of STOL and Python overlap.
Some features of STOL like the GOTO statement take
some effort to implement in Python. The synchronous
telemetry access of STOL can be mapped to GSEOS’
Sequencers. Including a graphical user front-end, the
entire effort could be completed within two person
weeks.

7. SUMMARY

Due to the embedded Python interpreter GSEOS has
substantial flexibility and potential for customization.
This was demonstrated by the intricate implementation of
the MESSENGER commanding scheme as well as the
implementation of the STOL programming language
within GSEOS. Code modules allow a natural way to
structure complex systems and facilitate team
development and customization.

8. REFERENCES

[1] Solomon, S. C., R. L. McNutt, Jr., R. E. Gold, M. H.
Acufia, D. N. Baker, W. V. Boynton, C. R. Chapman, A.
F. Cheng, G. Gloeckler, J. W. Head, III, S. M. Krimigis,
W. E. McClintock, S. L. Murchie, S. J. Peale, R. J.
Phillips, M. S. Robinson, J. A. Slavin, D. E. Smith, R. G.
Strom, J. I. Trombka, and M. T. Zuber, The
MESSENGER mission to Mercury: Scientific objectives
and implementation, Planet. Space Sci., 49, 1445-1465,
2001.

[2] Gold, R. E., S. C. Solomon, R. L. McNutt, Jr., A. G.
Santo, J. B. Abshire, M. H. Acuna, R. S. Afzal, B. J.
Anderson, G. B. Andrews, P. D. Bedini, J. Cain, A. F.
Cheng, L. G. Evans, W. C. Feldman, R. B. Follas, G.
Gloeckler, J. O. Goldsten, S. E. Hawkins, III, N. R.
Izenberg, S. E. Jaskulek, E. A. Ketchum, M. R. Lankton,
D. A. Lohr, B. H. Mauk, W. E. McClintock, S. L.
Murchie, C. E. Schlemm, II, D. E. Smith, R. D. Starr, and
T. H. Zurbuchen, The MESSENGER mission to
Mercury: Scientific payload, Planet. Space Sci., 49,
1467-1479, 2001.



