
Embedded Systems Conference / Boston, MA September 20, 2007

ESC-302
Stress Testing

Embedded Software Applications

T. Adrian Hill
Johns Hopkins University Applied Physics Laboratory

Adrian.Hill@jhuapl.edu

ABSTRACT
This paper describes techniques to design stress tests, classifies the types of
problems found during these types of tests, and analyzes why these problems
are not discovered with traditional unit testing or acceptance testing. The
findings are supported by citing examples from three recent embedded software
development programs performed by the Johns Hopkins University Applied
Physics Laboratory where formal stress testing was employed. It also defines
what is meant by the robustness and elasticity of a software system. These
findings will encourage software professionals to incorporate stress testing into
their formal software development process.

1. INTRODUCTON
Traditional Software Acceptance Testing is a standard phase in nearly every
software development methodology. Test engineers develop and execute tests
that are defined to validate software requirements. The tests tend to be rigid with
specific initial conditions and well-defined expected results. The tests typically
execute software within the limits prescribed by the software design. While these
tests are often complemented with System Tests or Use Case Tests, these
higher level scenarios still conform within the design bounds of the software.

OUTLINE

1. INTRODUCTON

1.1 What can be learned by “breaking” the software
2. DESIGNING A STRESS TEST

2.1 What is a reasonable target CPU load?
2.2 Other ways to stress the system
2.3 Characteristics of a Stress Test

3. REAL WORLD RESULTS
3.1 Case #1: Software Missed Receiving Some Commands When CPU Was Heavily Loaded
3.2 Case #2: Processor Reset when Available Memory Buffers Were Exhausted
3.3 Case #3: Unexpected Command Rejection When CPU Was Heavily Loaded
3.4 Case #4: Processor Reset When RAM Disk Was Nearly Full
3.5 Synopsis of All Problems Found During Stress Testing

4. SUMMARY

ESC-302 Stress Testing Embedded Software Applications Page 2 of 2

Software Stress Testing, however, runs counter to these traditional approaches
as demonstrated in Table 1. Stress testing involves intentionally subjecting
software to unrealistic loads while denying it critical system resources. The
software is intentionally exercised “outside the box” and known weaknesses and
vulnerabilities in the software design may be specifically exploited. Degraded
performance of a system under stress may be deemed perfectly acceptable,
thus, the interpretation of test results and definition of pass / fail criteria is more
subjective. Furthermore, a test that stresses one aspect of the software may
lead to undesirable side effects in another area of the software thus the entire
system behavior as a whole must be evaluated to properly analyze the results.

Software Acceptance Testing Software Stress Testing

Black Box Testing. No need to
understand software internals

Tests are designed to verify that
software meets requirements

Tests exercise software within
acceptable bounds

Pass / Fail criteria are clearly
defined

White Box Testing. Tests target
weak spots in the software design

Tests attempt to “break” the
software

Tests intentionally violate
constraints to stress software

Pass / Fail criteria are subjective

Table 1 Comparison of Acceptance Testing versus Stress Testing

1.1 What can be learned by “breaking” the software

For critical embedded software applications, the user has an expectation that the
software is robust. The dictionary defines robustness as the property of being
powerfully built or sturdy; one step below bulletproof. For software, this means
that the implementation should demonstrate resiliency. It is permissible for the
software to operate in a degraded fashion (e.g., dropping commands or missing
data) while under stress but the degradation should be graceful and recoverable.
A lack of robustness would lead to unacceptable behavior such as writing
corrupted data or resetting the processor.

Secondarily, the embedded software should demonstrate elasticity. The
dictionary defines elasticity as the property of returning to an initial form or state
following deformation. In a software context this means that when the stress is
removed the system should return back into its normal operating state and have
full functionality restored. A lack of elasticity would leave the software operating
in a degraded mode after the stress has been relieved.

ESC-302 Stress Testing Embedded Software Applications Page 3 of 3

While stress testing can validate the robustness and elasticity of the software
system, that validation may not be enough to justify the time and effort required
to develop and execute such tests. However, there is an additional benefit to
stress testing that may not be as readily apparent. Stress testing exposes design
flaws and implementation bugs that are difficult or impossible to discover under
traditional testing approaches. Furthermore, these flaws and bugs are often
present even when the system is not under stress. In such cases, the stress test
magnifies these inherent problems allowing them to be more easily detected.
Stress testing allows these defects to be corrected before the software is
deployed into the user community.

2. DESIGNING A STRESS TEST
Although there is no single approach to designing a stress test, a recommended
approach is shown in Figure 1. With this method, the CPU loading is increased
at the start of the overall test. Next, a series of subtests are run against the
heavily loaded processor. Each subtest exercises some type of targeted stress.
The type of stress is highly dependent upon the system under test and could
include items such as overflowing input buffers, simulating rapid keystrokes, etc.
It is perfectly valid to inspect the software design and inject stress that targets
specific areas such as input queues, interrupt service routines and critical
resources. As each subtest executes, a qualitative measure of performance
should be validated (i.e., robustness). This requires establishing an acceptable
level of degraded behavior for each subtest. Finally, after the series of subtests
completes, the CPU is returned to nominal levels and it is verified that the
software system returns to its nominal operating state to confirm the elasticity of
the system.

To simplify development, the subtests can often be developed, debugged and
executed “standalone” (while the system is not under stress) to validate the test
scripts and establish a baseline behavior before they are incorporated into the
larger Software Stress Test. This provides a level of modularity to the overall
stress test.

Figure 1 Structure of a Software Stress Test

2.1 What is a reasonable target CPU load?

One obvious way to place the software under stress is to perform steps to
increase the CPU load. Increasing the CPU load is especially important when

ESC-302 Stress Testing Embedded Software Applications Page 4 of 4

stress testing pre-emptive multitasking systems. Software designers spend
considerable effort assigning task priorities in a pre-emptive system to ensure
that all real-time deadlines are met. It has been shown that even if task priorities
are poorly assigned, task deadlines will usually be met when the overall CPU
load is less than about 85%. Said another way, having 15% overall free CPU
load can provide enough margin to mask flaws regarding task priority
assignments [LEHOCZKY01]. Since one purpose of the stress test is to expose
these flaws, the test should have a target CPU load of 90% or more, if possible.

2.2 Other ways to stress the system

Increasing CPU load is just one of the ways to stress a software system. Other
stress methods, which are typically employed in the subtests, include:

• Maximizing I/O data rates
• Maximizing data bus usage
• Maximizing interrupt rate
• Exhausting available memory
• Overflowing queues

2.3 Characteristics of a Stress Test

Ideally, stress tests should be scripted and repeatable. While stress testing may
seem less precise than traditional testing because of the subjectivity in evaluating
system performance and defining acceptable behavior, it does not mean that the
test process is any less formal. One possibility with stress testing is that a
problem may be observed one time but cannot be repeated. While not a fool-
proof solution, using scripts that can repeat a test will greatly increase the
likelihood that intermittent problems can be recreated improving the probability
that engineers can isolate the root cause.

Additionally, post-test analysis should always be performed to identify any
unexpected anomalies. Checklists can ensure that all necessary data points are
verified. If possible, scripting can to verify checklist items during the stress test.
Frequently there is a side effect when stressing the system in one area that may
have an unexpected effect on another area. Without a rigorous approach to
reviewing all data, these side effects may not be observed which undermines a
key benefit of Software Stress Testing.

3. REAL WORLD RESULTS
The Johns Hopkins University Applied Physics Laboratory (JHU/APL), located in
Laurel, Maryland, has developed spacecraft flight software for three recently
launched NASA missions. The embedded software is highly critical (a serious
fault can result in loss of mission) and is expected to operate continuously for
long periods of time (i.e., years) as shown in Table 2.

ESC-302 Stress Testing Embedded Software Applications Page 5 of 5

Mission Launch Duration
MErcury Surface, Space ENvironment,
GEochemistry, and Ranging
(MESSENGER)

August 2004 8 years

New Horizons
(Pluto-Kuiper Belt Mission)

January 2006 9+ years

Solar TErrestrial RElations Observatory
(STEREO)

October 2006 2+ years

Table 2 Recent JHU/APL Software Development Programs

All three software development efforts followed a formal software development
life cycle including requirements analysis, design, implementation, unit and
integration testing, requirements-based testing and system-level acceptance
testing. Formal Software Stress Testing was performed on the software near the
end of the software life cycle using the techniques described in this paper. The
effort required to develop and execute a stress test was far greater than that
required for any other individual software acceptance test. Overall, the stress
tests represented about 10% of the entire software acceptance test effort.

The stress testing uncovered a total of 32 problems across the three software
development efforts. The next subsections provide a detailed analysis of four of
the failures to demonstrate typical deficiencies discovered in stress testing. That
is followed by a synopsis which classifies all 32 problems by type and analyzes
trends and tendencies regarding the problems found while stress testing.

3.1 Case #1: Software Missed Receiving Some Commands
When CPU Was Heavily Loaded

A stress subtest was designed to issue a stream of 1000 commands at the
highest possible rate to the software while the CPU was heavily loaded (> 90%)
but not overloaded. The commands are buffered in hardware and the software
must service the buffer before it is overwritten. During the stress subtest, five of
the 1000 commands were dropped even though the CPU load during the subtest
never reached 100% (see Figure 2). Had the CPU usage peaked at 100% while
the commands were received, then dropped commands may have been an
acceptable degraded behavior. But when commands were dropped even though
there was still free CPU (albeit less than 10%), deeper investigation was
warranted.

ESC-302 Stress Testing Embedded Software Applications Page 6 of 6

Figure 2 Software missed receiving some commands

The investigation revealed a problem with task priorities (see Figure 3). There
was a Command Processing Task designed to read the commands from the
hardware buffer. The buffer had to be serviced every 32 milliseconds by the task
to avoid an overrun, thus, this was a hard deadline. A second task, the Health
Monitor Task, was running at a higher priority and periodically preempting the
first task. This higher priority task was responsible for performing all of the
autonomous health and safety monitoring on the spacecraft and initiating
corrective actions in the event of a fault. However, the Health Monitor Task ran
only once per second and had a longer real-time deadline (one second); the task
simply had to finish execution before it was time for that task to run again.

BEFORE

AFTER

Figure 3 Interaction between Command Processing and Health Monitor
Tasks

Investigation revealed that the software designers fell into a common trap of
assigning a higher priority to an “important” task (like monitoring spacecraft
health) rather than assigning the higher priority to the task with the shortest real-
time deadline. This allowed the Command Processing Task to be starved and it
occasionally missed servicing the buffer resulting in dropped commands.

When the priorities were corrected and the same subtest repeated, all 1000
commands were successfully received and both tasks met their real-time
deadlines despite no overall change in CPU loading.

ESC-302 Stress Testing Embedded Software Applications Page 7 of 7

3.2 Case #2: Processor Reset when Available Memory Buffers
Were Exhausted

A subtest was created which maximized data input rates so that the software
would exhaust all available memory. The test targeted a software
implementation that included a pool of fixed size memory buffers that were
allocated and freed by tasks in the system. Generally, tasks allocated buffers to
store and process input data and then released the buffers when processing was
complete. When uncharacteristically high inputs were driven into the system, the
software allocated buffers more quickly than it could free them, eventually driving
to a state with no free buffers (see Figure 4). It was expected that the software
would then drop input data (since buffers were not available) but continue to
execute in a degraded mode of operation. Instead, what was observed was that
when the buffers were exhausted, the processor reset.

Figure 4 Maximize input data rate to exhaust memory

Investigation uncovered a classic programming error where a return value was
not being checked (see Figure 5). A utility GetBuffer() function was used
throughout the software to allocate a buffer from the fixed size pool. The function
provided a pointer to the buffer as well as a return code to indicate whether a
buffer was available. In one instance in the software, the return code was not
checked and the resulting “null” buffer was used causing arbitrary memory to be
overwritten leading to a watchdog reset. Once the problem was isolated, the
remedy was to check the return code before using the buffer.

ESC-302 Stress Testing Embedded Software Applications Page 8 of 8

BEFORE

AFTER

Figure 5 Checking return code of a call to GetBuffer()

At a first glance, one may wonder why this was not caught in unit testing. The
problem is that the unit test focuses on paths of execution. If the developer
forgets to implement the error checking logic, he will not test for it because there
is no error path to test.

It should be noted that there were 65 instances of calls to GetBuffer() throughout
the software and this was the only instance that did not have the proper error
checking. By stressing the software, this single stress test validated the error
handling of all 65 invocations of GetBuffer().

Once the coding error was corrected and the test repeated, the desired graceful
degradation was observed – some input data was lost but the software continued
to operate (i.e., robustness). When input data rates were returned to nominal
levels, full software operation was restored (i.e., elasticity).

3.3 Case #3: Unexpected Command Rejection When CPU Was
Heavily Loaded

A stress subtest was devised that sent certain commands to the software while
the CPU was heavily loaded but not overloaded. When the software receives
these commands it performs an internal consistency check on the command
fields before accepting it for further processing. Intermittently, the software was
rejecting some of the commands because they failed this consistency check
which indicated that the command was garbled. When the exact same command
was later sent to the software, it was accepted by the software as valid. The
problem appeared to be random.

The investigation into the behavior revealed that two tasks were using the same
unprotected shared memory resource (see Figure 6). The Command Processing

ESC-302 Stress Testing Embedded Software Applications Page 9 of 9

Task used a Stack data structure in memory to validate the command data
arguments. A higher priority Health Monitor Task used the same data structure
to validate previously loaded health monitor checks. Occasionally, the higher
priority Health Monitor Task would preempt the Command Processing Task while
it was in the middle of validating a command. The higher priority task would
“corrupt” the Stack, thus when the Command Processing Task resumed after
preemption, it appeared that the command that it was processing was invalid.

BEFORE AFTER

Figure 6 Tasks accessing an unprotected resource

The root cause was further masked by the fact that the two tasks actually called
a common function that performed the validation check and did not manipulate
the Stack data structure directly. This common function was not reentrant
because it used a static Stack data structure.

The resolution was to separate the common function into two functions, each
with its own Stack data structure. The subtest was repeated and the software
worked as expected with no rejected commands.

This is an example of a flaw that was inherent in the implementation and could
have struck at anytime regardless of CPU load. However, it is more likely to
strike when the CPU is loaded because there are more opportunities for the two
tasks to interact. That is why the problem presented itself so easily under stress
conditions. This type of problem is rarely discovered in unit testing because unit
tests are typically run in their own thread of execution and reentrancy problems
will rarely reveal themselves in single-threaded environments. It’s only in a
multitasking environment with frequent task preemptions that a problem like this
will rise to the surface.

3.4 Case #4: Processor Reset When RAM Disk Was Nearly Full

The software supported a 1 Gigabyte (GB) RAM disk. The software ingested
high speed scientific data from an imaging instrument and stored this data onto
the disk. A stress subtest was designed to generate image data until the RAM
disk was completely filled (see Figure 7). This is analogous to snapping pictures
with a digital camera until the memory card is full. It was expected, once the disk
was full, that the software would then drop subsequent image data but otherwise
continue normal operations. However, when the test was executed, the

ESC-302 Stress Testing Embedded Software Applications Page 10 of 10

processor unexpectedly reset when the RAM disk reached about 98% of its
capacity.

Figure 7 Recording to RAM disk until completely full

The software and underlying operating system organized the RAM disk into
65,536 clusters of equal size (16 Kilobytes per Cluster). Each cluster was
marked by the operating system as used or free (See Figure 8). When the
software needed to find a new cluster to store data it executed a system call that
returned the address of a free cluster.

Figure 8 Organization of RAM Disk into clusters

Analysis showed that the search time to find a free cluster grew nearly
exponentially as the RAM disk usage approached capacity. This was because
the algorithm employed to find a free cluster performed a linear search checking
cluster after cluster until it discovered one marked free. Figure 9 shows the
average number of attempts (N) required to find a free cluster as a function of
RAM disk percentage full (p) using this inefficient brute force search algorithm.
The number of attempts, and thus the time required to find a free cluster, rises
dramatically around the 90% usage level. It requires an average of 10 attempts
to find a free cluster when the RAM disk is 90% used, 50 attempts at 98% used
and a whopping 32,768 attempts when only one free cluster remains! Thus,
search times that took hundreds of microseconds on a nearly empty RAM disk
were now measured in seconds when the RAM disk was nearly full.

ESC-302 Stress Testing Embedded Software Applications Page 11 of 11

Figure 9 Number of attempts required to find a free cluster

Thus it follows that during the subtest as the RAM disk was filling, the search
time to find a free cluster took longer and longer, eventually causing other tasks
to be starved, leading to a watchdog reset.

This search algorithm, however, was in the operating system rather than the
software application code. Although the team had access to the operating
system source code as well as an approach for a much improved search
algorithm, they were reluctant to change the operating system late in the
software development cycle. Instead, an operational constraint was established
to maintain the RAM disk at no more than 95% used. No change was made to
the software.

3.5 Synopsis of All Problems Found During Stress Testing

As mentioned earlier, 32 problems were formally reported from stress testing
across the three software development programs. Test engineers were
encouraged to document problems regardless of root cause. As such, the total
includes problems that were subsequently determined to be non-software issues.
The 32 problems are organized by type and presented in Figure 10.

ESC-302 Stress Testing Embedded Software Applications Page 12 of 12

Problem Type Definition
Multitask Errors Software Errors attributed to complexities of a multitasking environment such as:

• Tasks that starve other tasks (causing missed real-time deadlines or
watchdog resets)

• Omitting semaphore protection around shared resources
• Non-reentrant procedures
• Deadlocks
• Priority Inversion
• Race Conditions

Major Coding
Errors

Software Bugs that result in unpredictable or undesirable execution such as:
• Referencing uninitialized variables
• Missing ‘break’ statement in a C-Language case statement

Minor Coding
Errors

Software Bugs with minimal operational consequence such as:
• Reporting wrong ID in an anomaly message
• Incrementing wrong error counter

Acceptable
Behavior

Observing degraded operation while a constraint is violated. Example:
• Sending 15 commands per second (when software is designed to accept

10 commands per second) results in software missing some commands.
Constraint Causing an unrecoverable problem when constraint is violated. Example:

• Sending 15 commands per second (when software is designed to accept
10 commands per second) causes processor to reset

User
Documentation
Error

Discrepancies between user documentation and actual software implementation

Test Equipment
Problem

Problems that originally appear to be software issues but are later attributed to
failure of test equipment

Unexplained Problems that occur whose root cause cannot be identified. Typically the problem is
not reproducible.

Figure 10 Classification of all problems identified during Stress Testing

ESC-302 Stress Testing Embedded Software Applications Page 13 of 13

3.5.1 Software Problems Identified by Stress Testing

The types identified on the right hand side of the pie chart address 16 of the 32
problems and demonstrate those whose root cause is an error in the software
design or implementation. All of these errors resulted in modifications to the
software to correct the issue.

The most prevalent type of software error identified during stress testing was
multitask errors. There were seven such errors across the three programs.
These are errors attributed to the complexities of task interconnections in a
multitasking environment. This result is not surprising given that stress tests
“excite” the interactions between tasks and increase the likelihood of missed real-
time deadlines, deadlocks, race conditions, reentrancy issues and other
multitasking related errors Two of the four cases presented earlier (incorrect task
priorities and non-reentrant code) fall into this category.

A second type of software error was major coding errors and three such errors
were identified. These are logic errors in the code that result in unexpected or
undesirable behavior and three such instances were found during the stress
testing programs. The earlier case where a return value was not checked before
a buffer was accessed is an example of major coding error.

Also, six minor software errors were found. These represent errors with
minimal operational consequence such as reporting the wrong ID code in a log
message or incrementing the wrong error counter. Since stress testing often
executes off-nominal paths through the code, it follows that these types of
problems are exposed in these tests.

3.5.2 Other Problems Identified by Stress Testing

The left hand side of the pie chart reveals problems whose root cause was
attributed to something other than the software under test. This is not unusual
since the root cause of an apparent test problem is not always immediately
known.

There were seven instances of user documentation errors discovered during
stress tests. These were inconsistencies between the user documentation and
the actual software implementation that resulted in an update to the document.

Five test equipment problems were noted which covered problems that were
isolated to the support equipment used to run the tests and inject faults.

There was one case of acceptable behavior where further analysis deemed that
the degraded behavior of the system under stress was acceptable.

There were two cases where stress testing uncovered a previously unrealized
constraint on the system. The case presented earlier where the processor reset

ESC-302 Stress Testing Embedded Software Applications Page 14 of 14

when the RAM disk was nearly full is an example of a problem identified as a
constraint. Recall that no software change was made, however, an operational
constraint was established to document the limitation.

Finally, there was one instance of an unexplained problem where the processor
unexpectedly reset. The problem could not be duplicated despite repeating the
same test multiple times. Based on available data it is believed that the problem
was related to an anomaly with test equipment, however no definitive
determination could be made.

4. SUMMARY
Software Stress Testing should be an essential component for any critical
embedded software development program. While typically not written as a
formal requirement, users have an expectation that the software demonstrates
the characteristics of robustness and elasticity in response to any user actions.
Furthermore, stress testing can expose design flaws and software bugs that are
not easily uncovered using traditional testing methods. The problems uncovered
in stress testing often involve the complex interactions between tasks such as
missed real-time deadlines, deadlocks, race conditions, and reentrancy issues.
A formal and rigorous approach to Software Stress Testing can uncover serious
problems before the software is released into the user community.

REFERENCES

[LEHOCZKY01] J. Lehoczky, L. Sha and Y. Ding, The Rate monotonic
scheduling algorithm: exact characterization and average case behavior, IEEE
Real-Time Systems Symposium, pp. 166-171, December 1989.

