
FLYING CFDP ON MESSENGER

Christopher J. Krupiarz and Brian K. Heggestad
The Johns Hopkins University Applied Physics Laboratory
11100 Johns Hopkins Road, Laurel, MD USA 20723-6099

 E-mail: Christopher.Krupiarz@jhuapl.edu, Brian.Heggestad@jhuapl.edu

Richard D. Carper
Consultant, Space Data Systems

3934 N.W. Sitka Place, Corvallis, OR USA 97330-3344
E-mail: richardcarper@comcast.net

ABSTRACT

The MESSENGER mission to Mercury will downlink data files via a protocol defined by the
Consultative Committee for Space Data Systems (CCSDS) called the CCSDS File Delivery Protocol
(CFDP). A reduced implementation of the protocol was developed for the spacecraft due to various
system constraints and operational requirements. The software operates in conjunction with the
playback features of the MESSENGER flight software allowing for the autonomous downlinking of
files as well as providing for the management of the file system by the mission operations team.
This paper presents the software implementation, metrics, and the lessons learned.

KEYWORDS

CCSDS, CFDP, MESSENGER, File Transfer

INTRODUCTION

MErcury, Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) is a NASA
Discovery mission to study the planet Mercury. MESSENGER was launched on August 3, 2004,
and will include one flyby of Earth, two flybys of Venus, and three flybys of Mercury, followed by
Mercury orbit insertion in March 2011 for a one-year science-gathering mission. Through all phases
of the mission, MESSENGER will collect data from seven instruments on key characteristics of the
planet to further understand Mercury and the formation of the inner solar system [1]. As part of the
system software developed by The Johns Hopkins University Applied Physics Laboratory
(JHU/APL), MESSENGER will reliably downlink files of instrument and spacecraft housekeeping
data via a protocol defined by the Consultative Committee for Space Data Systems (CCSDS) called
the CCSDS File Delivery Protocol (CFDP) [2].

A typical spacecraft computer for a science mission at JHU/APL consists of one or more
microprocessors performing various operations for commanding and controlling the spacecraft along
with a device for storing mission data. Examples of such systems are shown in Table 1, which
provides an overview of past JHU/APL Command & Data Handling (C&DH) subsystems and the
amount of storage available on their Solid State Recorders (SSRs). These SSRs consist of static
random access memory (SRAM) or other types of volatile or nonvolatile memory to store science
and spacecraft housekeeping data.

Table 1: Command and Data Handling Spacecraft Computers for JHU/APL Missions

Mission CPU Speed

(MHz)
SSR

(Gbits)
NEAR (1996) RTX2010 6 1 & .5
ACE (1997) RTX2010 6 1
TIMED (2001) Mongoose 12 2.5
CONTOUR (2002) Mongoose 12 5
MESSENGER (2004)1 RAD6000 25 8

 1Processor performs both C&DH and G&C

In JHU/APL missions prior to MESSENGER, the SSR was treated as a raw device on which data
were serially stored and then retrieved for transmissions to the ground. For example, for
CONTOUR, all instrument data were formatted into CCSDS telemetry packets of one particular size
and placed on the recorder. Upon playback, pointers were set to indicate from where on the SSR to
begin reading and to end reading. The packets were then inserted four at a time into CCSDS transfer
frames and telemetered to the ground. Upon receipt of the data, ground software reassembled the
data, at which time it was determined whether data needed to be resent. With the MESSENGER
mission, operational and system requirements are such that an alternate storage method using an on-
board file system is necessary. This is due to two primary factors [3].

The first factor is that MESSENGER has severe constraints on its downlink capability as a result of
the available downlink rates, the amount of downlink time, and the long round-trip light time. As
such, information stored on the spacecraft needs to be prioritized by importance with some data,
such as contingency engineering telemetry and even some science results, not being downlinked in
the event the bandwidth is not available. In order to accomplish this using a raw device, a complex
and proprietary partitioning system would have been required to allow the flight software or the
mission operations team to select what data should be telemetered. With a file system, this process
is simplified as the data can be stored by priority and only those high priority data that fit within the
bandwidth constraints will be transmitted. The file system also provides simplified management of
this information by deleting lower priority data which are no longer needed, thus allowing for space
to be made available on the SSR.

The second factor is that most of the science data to be stored on the SSR are from the Mercury Dual
Imaging System (MDIS). These are images taken by the instrument that the flight software may
compress and then downlink as individual files. Again, a file system reduces the complexity by
providing the ability to delineate individual variable length images and to also allow for prototyping
of the image compression software on a desktop computer.

Besides enabling the ability to achieve mission requirements, the shift to a file system also allows
operations personnel to clearly see what data is available on the flight system as well as providing a
streamlined method for comparing what has been downlinked. With this new addition to the
standard JHU/APL spacecraft software architecture, a method needed to be developed to downlink
the files to the ground. This led to the inclusion of CFDP into the MESSENGER software
architecture.

THE CCSDS FILE DELIVERY PROTOCOL

As part of the system engineering process, the needs for MESSENGER’s file downlinking ability
were examined to determine what would be expected from a file transfer protocol. Various
requirements were determined such as the need to autonomously find errors in the downlinked data
as well as the need to handle a round-trip light time of several minutes. Included in this review of
methodologies was CFDP. However, upon the initial evaluation, the use of CFDP was rejected by
the mission software engineers as it was determined to be still in its infancy and thus too risky to
include on MESSENGER. Work was then performed by team members to develop a protocol to
meet the mission needs. As this work developed and through interaction with members of other
mission teams, a second look was given to CFDP. As it was readily apparent that the direction being
taken by the “in-house” protocol was beginning to match in many ways with the now solidifying
CFDP standard, the protocol was adopted for use on MESSENGER.

At its core, CFDP can be described as a File Transfer Protocol (FTP)-like mechanism for
transferring files between two entities. However, unlike typical Internet file transfers from one place
on the globe to another, this protocol enables transfer of files across interplanetary distances. It is
specifically engineered for spacecraft operating outside of Earth orbit with long link delays > 10
seconds and asymmetric bandwidth. CFDP can be configured to transfer files from the ground to the
spacecraft and from the spacecraft to the ground, as well as among configurations of a network of
platforms such as a spacecraft constellation or a series of planetary landers. CFDP also enables the
control of a distant filestore through the use of typical file operation commands such as delete, move,
and copy.

Although a full description of the protocol is beyond the scope of this paper, it is useful to observe
an example file transfer as outlined in Figure 1. This typical transaction has two CFDP entities: (1)
a spacecraft and (2) a ground system. The file being transferred in this diagram is from the
spacecraft to the ground with the transaction being initiated either remotely by the ground or locally
by the spacecraft flight software. The lines between the two entities represent transfers of CFDP
Protocol Data Units (PDUs) from MESSENGER to the Mission Control Center (MOC). PDUs can
range from information about the file being transferred to actual pieces of the file itself. The
diagram shows what occurs during nominal transmissions as well as anomalous operation, typically
due to lost data. In this example, a method of negative acknowledgement (NAK) called Deferred
NAKs is used. This means the ground will wait until the flight software has completed sending all
pieces of the file before transmitting to the spacecraft what pieces were not received. Other NAK
methods are available in CFDP as well as an Unacknowledged Mode where no NAKs are sent.

MESSENGER MOC

1. Metadata Information (Trans ID, #Segs, etc.)

2. Data PDUs…

5. Missing PDUs, including Metadata (NAKs)

3. EOF PDU

4. EOF Received PDU (ACK)

6. File Finished PDU (FIN)
Only sent after file successfully assembled

5a. Retransmissions (if any)

7. FIN Acknowledgement CLOSED on ground

CLOSED on SC

OPENED on SC

OPENED on ground

Figure 1: CFDP Transaction Example

The first step in the transmission of the file is the creation of a Metadata PDU by the flight software.
This PDU contains information such as the file name and file size. Also included is CFDP
housekeeping information such as the unique transaction ID for this file. This value is used to
distinguish the various ongoing transactions from one another. Next, the file is segmented into File
Data Units (FDUs) and transmitted to the ground. The receiving software then reassembles the file
as these are stored. Once the file has been completely transmitted, an End of File (EOF) PDU is sent
to the ground indicating that all data have been sent. Upon receipt of this information, the receiving
entity acknowledges its receipt by sending an EOF Acknowledgement (ACK) and then determines if
any pieces of the file are missing. If so, the ground sends a NAK to the spacecraft listing what
segments of the file need to be resent. The flight software then retransmits these pieces of the file to
the ground. Once the ground has determined the file to have been completely received, it notifies
the flight software of this state through the transmission of a Finished Indicator (FIN). The flight
software responds with a FIN ACK and then considers the transmission complete.

Also defined in the CFDP protocol are timers to ensure that the receiving or sending entities do not
wait forever for data that may have been lost. In this example, there are four timers. Both the
ground and the flight software have overall transaction timers in which the transmission of the file
must complete. The flight software also has a timer that starts after transmission of the EOF. If an
EOF ACK is not received before the timer runs out, the EOF is retransmitted with the number of
retransmissions is configurable. On the ground side, there is a similar timer for the NAKs as well as
the FIN. If the requested NAK data are not received or a FIN ACK is not seen, the NAK or the FIN
is resent.

MESSENGER FILE SYSTEM STORAGE

Files on MESSENGER consist of spacecraft housekeeping and science data. The flight software
allows for the routing of all telemetry packets into files. It is in this way that housekeeping data and
science telemetry packets are stored. The other types of files are images from the MDIS instrument.
These are stored via a Direct Memory Access (DMA) transfer between an interface card and the
SSR.

When a file is completed and ready for downlinking, it is placed in one of ten priority directories.
These are shown in Figure 2. Operations personnel have the option of downlinking these files
individually by command or by using MESSENGER’s autonomous playback capability. This
process involves the flight software periodically scanning these directories and determining if a file
is available. If so, it starts the CFDP process by initiating a transaction to downlink the file.

 /DNL Prioritized Sub-directories
/ P0 - Critical OpNavs
/ P1 - Hskpg Snapshot & Promoted Files
/ P2 - High Priority Operational Files
/ P3 - High Priority Science, Health & Safety Files
/ P4 - Orbit Maintenance/Reconstruction OpNavs
/ P5 - Prime Science Files (Medium Priority Science)
/ P6 - Bonus Science Files (Low Priority Science)
/ P7 - Instrument Burst & Contingency Files
/ P8 - Autonomy Spawned Engineering Files
/ P9 - Engineering Contingency Files

Next
Track

Some Future Track

Data
Recovery
Unlikely

Figure 2: MESSENGER Directory Structure

CFDP ON MESSENGER

The first step in defining the use of CFDP on MESSENGER was to determine what aspects of the
protocol were needed. The CFDP protocol is highly configurable depending upon mission needs,
and selections such as the Deferred NAK mode were selected as a result. Also for MESSENGER,
files are transferred only from the spacecraft to the ground, as heritage code is used for sending data
to the spacecraft.

The initial approach for software on the flight side was to use an implementation provided by the
NASA Jet Propulsion Laboratory (NASA/JPL). This implementation has many benefits including
that the same code runs on both the flight and ground systems (evidenced by its incorporation into
the MESSENGER ground system [4]), it is highly configurable, and it includes the full CFDP
implementation. It also provides a test environment for linking entities operating on various
platforms through the User Datagram Protocol (UDP), thus permitting early testing before the
underlying CFDP communication layer is developed. Various tests were performed on this system,
and it was found to function well on both the flight and ground hardware. However, MESSENGER

has only 8 Megabytes of RAM and 4 Megabytes of EEPROM for storing the flight image and a
processor running at 25 MHz that must perform not only C&DH but Guidance and Control (G&C)
as well as image compression. It was decided that in order to ensure the meeting of these tight
margins, the CFDP code needed to be completely under the control of JHU/APL developers with a
design created with these constraints in mind. A home-grown version of the CFDP protocol was
thus designed and implemented.

This “CFDP-lite” version of the protocol implements only the aspects of CFDP that will be used on
MESSENGER. For instance, as stated earlier, files are to be sent only from the spacecraft to the
ground, so no capability to rebuild files on the flight side were implemented. Also, memory usage
was kept to a minimum by limiting file information stored onboard for each transaction. Developing
the code in-house also allows for a tighter coupling with the playback capability of MESSENGER.
File system operations were placed outside of the protocol, which again added to simplifying the
flight code [5].

RESULTS AND OBSERVATIONS

Initial results of the flight CFDP implementation have been developed through the build testing of
the software. These results indicate that the implementation will meet the mission memory needs
with a 66-kilobyte code footprint and 33 kilobytes of RAM memory usage. A study of the
throughput was also performed to examine the maximum rate of PDU downlinking. It was also
determined that although compatible with future JHU/APL missions, a more generic design would
have allowed for easier reuse among organizations.

Once it was determined that full functionality was met, the focus on the evaluation of the CFDP
implementation turned to throughput. The flight computer was loaded with approximately 100 105-
kilobyte image files which were then downlinked. Processor loading was approximately 55%. A
timer was set as each transfer frame was starting to be built and stopped when it was ready to be
downlinked. These times to create a transfer frame ranged from < 1 millisecond to 256 milliseconds,
with most transfer frames built between 1 and 2 milliseconds. With each transfer frame being 8920
bits, the "average" theoretical throughput would be between 8.9 Mbps and 4.5 Mbps. Although
useful for evaluation purposes, it’s important to remember this test doesn't cover how long it takes to
write the transfer frame into the downlink buffer (although not a great amount of time), nor does it
account for all the transfer frames that took much longer than 1 to 2 milliseconds to be built.

Further study was made on the transfer frames that fell outside of the 1 to 2 millisecond range.
Initial observations indicated that some of the larger creation times were due to impacts from high-
priority tasks. A second test was run with the playback task running at a higher priority. This
greatly diminished the number of timing overruns, but some still remained. More analysis indicated
these were due to both the opening and closing of files as well as filling transfer frames with
multiple PDUs. The majority of transfer frames contain parts of two FDUs. However, at the end of
a file, there may not be enough data to fill the bulk of a frame. At this time, the current file is closed
and a new file is started. Thus that transfer frame could potentially consist of a partial FDU, a
complete FDU, an EOF, a Metadata PDU, and a partial FDU from the next file. As a result, four
calls are made to the CFDP library to retrieve a PDU for that transfer frame where it is on average

just one, and two of those calls are high-overhead file system calls involving the opening and closing
of files. A lesson learned from this is that it would be advantageous to queue the transfer frames,
although that leads to questions about when to start the various timers.

A final observation is this implementation of CFDP is not very portable as it is tightly coupled with
the playback task. From the standpoint of JHU/APL, this is acceptable since missions use similar
architectures and this would be adaptable to future spacecraft. However, it was evident that the
design could have been improved when a request from outside JHU/APL was made to share this
implementation. Unlike the NASA/JPL implementation which was readily available for use outside
NASA/JPL, another layer would need to be added to allow this to happen with the JHU/APL
implementation. Much has been learned about the protocol since the initial design that would have
enabled a more adaptable version.

SUMMARY

Due to mission and operational requirements, the MESSENGER mission brought a change to the
standard method of storing science and housekeeping data on JHU/APL spacecraft. Unlike past
missions where a raw storage model was used, MESSENGER will be using a file system. This new
technology insertion presented an issue on how to downlink efficiently the data stored in these files.
It was found that CFDP would meet these needs, and through the reuse of a NASA/JPL
implementation on the ground and a JHU/APL “CFDP-lite” implementation on the flight side, this
protocol was included in the MESSENGER software architecture.

ACKNOWLEDGEMENTS

Scott Burleigh of NASA/JPL was extremely helpful and responsive to the needs of the JHU/APL
flight software developers in interpreting the nuances of CFDP. Thanks are also due to William
Stratton, Constantine Frangos, Joseph Harrison, Kevin Lyons, and Doug Holland, who implemented
the ground side of the CFDP equation at JHU/APL as well as Michael Paul for his role in testing the
flight software.

REFERENCES

[1] Solomon, S. C., R. L. McNutt, Jr., R. E. Gold, M. H. Acuña, D. N. Baker, W. V. Boynton, C. R.
Chapman, A. F. Cheng, G. Gloeckler, J. W. Head, III, S. M. Krimigis, W. E. McClintock, S. L.
Murchie, S. J. Peale, R. J. Phillips, M. S. Robinson, J. A. Slavin, D. E. Smith, R. G. Strom, J. I.
Trombka, and M. T. Zuber, The MESSENGER mission to Mercury: Scientific objectives and
implementation, Planet. Space Sci., 49, 1445-1465, 2001.

[2] CCSDS File Delivery Protocol (CFDP). Recommendation for Space Data System Standards,
CCSDS 727.0-B-1, Blue Book, Issue 1, CCSDS, Washington, D.C., January 2002.

[3] Krupiarz, C. J., D. A. Artis, A. B. Calloway, C. M. Frangos, B. K. Heggestad, D. B. Holland, and
W. C. Stratton, File-based data processing on MESSENGER, Proc. 5th IAA International
Conference on Low-Cost Planetary Missions, Acta Astronautica, Journal of the International
Academy of Astronautics, SP-542, 435-441, Noordwijk, The Netherlands, September 24-25, 2003
(published January 2004).

[4] Stratton, W. C., C. M. Frangos, J. J. Harrison, and D. B. Holland, Reuse of the JPL CFDP
software in the APL Common Ground System, Proceedings of the 5th International Symposium on
Reducing the Cost of Spacecraft Ground Systems and Operations (RCSGSO), Paper 103-A0036, 8
pp., Pasadena, CA, July 8-12, 2003.

[5] Krupiarz, C. J., S. C. Burleigh, C. M. Frangos, B. K. Heggestad, D. B. Holland, K. M. Lyons,
and W. C. Stratton, The use of the CCSDS file delivery protocol on MESSENGER, Space
Operations 2002 Conference, American Institute of Aeronautics and Astronautics (AIAA), abstract
T5-35, Houston, TX, October 9, 2002.

