
 1

1

MESSENGER: Flight Software Design for a Deep Space
Mission

David A. Artis, Brian K. Heggestad, Christopher J. Krupiarz, M. Annette Mirantes, J. Doug Reid
The Johns Hopkins University Applied Physics Laboratory

11100 Johns Hopkins Road
Laurel, MD 20723-6099

E-mail: {David.Artis, Brian.Heggestad, Christopher.Krupiarz, Annette.Mirantes, Doug.Reid}@jhuapl.edu

Abstract—MErcury Surface, Space ENvironment,
GEochemistry, and Ranging (MESSENGER) is a NASA
Discovery mission to study the planet Mercury. Launched
in August 2004, it will perform one more flyby of Venus
and three flybys of Mercury, followed by Mercury orbit
insertion in 2011 for a one-year science-gathering mission.
Throughout the mission, MESSENGER will use seven
instruments to collect data about key characteristics of the
planet to understand Mercury and the formation of the inner
solar system. 1 2

With the requirement that MESSENGER operate at
distances of tens of millions of kilometers from Earth, the
flight software team at The Johns Hopkins University
Applied Physics Laboratory (JHU/APL) designed a system
software architecture to work within the confines of deep
space as well as the hostile near-Sun environment of
Mercury. The constraints imposed by this setting include
limited on-board storage, low bandwidth, long light-time
delays, and intermittent connectivity with Earth. The team
systematically targeted these problem areas by introducing
various technologies: (1) an on-board file system using
configurable telemetry storage to address the limited on-
board storage, (2) a prioritized naming scheme for the file
system providing for optimal use of low bandwidth to
ensure that critical data are received by the ground as
required, (3) use of the Consultative Committee for Space
Data Systems (CCSDS) File Delivery Protocol (CFDP)
standard for reliable file data delivery, to address the light
time delays and intermittent connectivity encountered by
MESSENGER, and (4) a configurable and robust autonomy
and safing system to protect the spacecraft while it is out of
contact with Earth.

The MESSENGER guidance and control (G&C) software is
a key component in all phases of the mission. This highly
complex set of algorithms maintains spacecraft attitude,
manages spacecraft momentum, executes deep-space
propulsive maneuvers, controls the solar arrays for
optimized pointing to the Sun, manages spacecraft thermal
environment by ensuring the sunshade always faces the
Sun, and, finally, enables a host of pointing options and
instrument pointing control in support of science operations.
All of this complexity was modeled in Mathwork’s
SIMULINK environment and was ultimately auto-generated

1 1-4244-0525-4/07/$20.00 ©2007 IEEE.
2 IEEEAC paper #1089, Version 6, Updated July 1, 2006

into flight code using Real Time Workshop (RTW). In
support of this code were over one thousand different
parameters as well as complex and extensive management
of on-board ephemerides. Additionally, the G&C software
was co-resident with the command and data handling
software, consuming approximately slightly more than half
of processor bandwidth and memory.

This paper first provides a high-level overview of the
MESSENGER flight computer system including both the
overall hardware and software architectures. Following
these descriptions is a detailed review of the specific new
technology introduced to address the constraints and
limitations of operating in the deep space and Mercury
environments. The paper concludes with an analysis of the
performance of the software over MESSENGER’s first year
in space including details of G&C operations during
mission milestones relating to deep space maneuvers and
the uploading of upgraded versions of the flight software.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. CONSIDERATIONS FOR A DEEP SPACE MISSION .. 2
3. ON-BOARD FILE SYSTEM...................................... 4
4. CCSDS DELIVERY FILE PROTOCOL 4
5. AUTONOMY ... 6
6. GUIDANCE AND CONTROL.................................... 6
7. SUMMARY ... 8
ACKNOWLEDGEMENTS... 8
REFERENCES... 8
BIOGRAPHY .. 9

1. INTRODUCTION

MErcury, Surface, Space ENvironment, GEochemistry, and
Ranging (MESSENGER) is a NASA Discovery mission to
study the planet Mercury. MESSENGER was launched on
August 3, 2004, flew by the Earth a year later in 2005 with
a resultant image shown in Figure 1, and swung by Venus
on October 24, 2006. The remaining major events of the
mission include one more flyby of Venus, three flybys of
Mercury, and, finally, insertion into Mercury orbit in March
2011 for a one-year science-gathering mission [1].
Throughout all phases of the mission, MESSENGER will
use seven instruments to collect data about key
characteristics of the planet to further understand Mercury
and the formation of the inner solar system [2]. As part of

the system software developed by The Johns Hopkins
University Applied Physics Laboratory (JHU/APL),
MESSENGER accommodates the constraints placed on it
by operating in a deep space mission environment.

 2

The MESSENGER flight software runs on flight electronics
called the integrated electronics module (IEM). The IEM
has two RAD6000 processors: the main processor (MP) and
the fault protection processor (FPP). The MP is responsible
for both command and data handling (C&DH) and guidance
and control (G&C). The MP has 8 MB of RAM storage,
and it communicates with a 1-GB solid-state recorder (SSR)
via the peripheral component interconnect (PCI) backplane.
The application software runs over the VxWorks operating
system developed by Wind River, Inc.

Figure 2 shows MESSENGER instrument data flow. The
MESSENGER flight computer collects data from several
instruments depicted in blue including the MESSENGER
Dual Imaging System (MDIS), the Gamma-Ray and
Neutron Spectrometer (GRNS), the Magnetometer (MAG),
the Mercury Atmospheric and Surface Composition
Spectrometer (MASCS), the Energetic Particle and Plasma
Spectrometer (EPPS), and the X-Ray Spectrometer (XRS)
[3]. With the exception of MDIS, instruments flow their
data in the form of Consultative Committee for Space Data
Systems (CCSDS) data packets through the Data Processing
Unit (DPU) shown in green and then across the 1553 bus to
the MP. In the case of MDIS, data flow directly to the IEM
via a high-speed interface. Image segments are collected in
a buffer within the IEM and then transferred via Direct
Memory Access (DMA) to the SSR depicted in yellow.
Images are compressed when necessary and downlinked to
the ground via CFDP.

Figure 1 – Earth from MESSENGER, August 2005

2. CONSIDERATIONS FOR A DEEP SPACE MISSION

In the early days of defining the MESSENGER spacecraft
architecture and mission design, several unique aspects of
the mission became key drivers that greatly influenced
flight software design choices:

! As a deep space mission, MESSENGER has much
lower communication data rates than are typical with
Earth-orbiting spacecraft. The communication rate can
range from 10 bps to 104 kbps with round-trip light-
time delays as long as 24 minutes. The low downlink
data rate, combined with an analysis of science data
collection while in orbit around Mercury, resulted in
selecting an SSR that could store 1 GB of data.

! Storage of images taken by MDIS, while in orbit at

Figure 2 – MESSENGER instrument data flow with corresponding mirrored CFDP and file storage

 3

Mercury, would be a major challenge. Because of the
low downlink rates coupled with an image acquisition
rate of 3.2 Mbps, images would have to be stored while
close to Mercury, and transmitted to Earth at a later
time. To conserve SSR space and downlink bandwidth,
images that are initially stored on the SSR in
uncompressed format must be compressed for longer-
term storage.

! MESSENGER is a 3-axis stabilized spacecraft with
pointing controlled by G&C software that operates
reaction wheels and a complex propulsion system. The
spacecraft sunshade must at all times be kept pointing
to the Sun to ensure that delicate spacecraft electronics
are protected from damaging solar heat. While
temperatures on the face of the sunshade can reach 350o
C, the shaded electronics remain at room temperature
and even require heaters. Should G&C fail to keep the
spacecraft Sun-pointed for any longer than 30 min, the
spacecraft could be lost due to overheated electronics
and solar arrays that fail to charge the battery.

! At times during the multi-year journey to reach
Mercury, solar conjunctions will block the Earth from
having communication contact with the spacecraft.
These blackout periods can be as long as 40 days.
Software must support a rule-based autonomy system
that could monitor for faults and take corrective action,
such as switching to the backup unit for a specific
subsystem on the highly redundant spacecraft, without
waiting for ground intervention. Furthermore, G&C
software would need to be able to operate thrusters
autonomously should some anomaly cause a Sun-
pointing violation.

These key features of the MESSENGER mission led to
several software design decisions that were new for a
JHU/APL spacecraft mission.

On-board file system and CCSDS File Delivery Protocol

Given the desire to maximize the return of science data and
the need for flight software to store images and compress
them at a later time, it was decided to manage the SSR using
a file system. This allowed the SSR to be treated as if it
were a virtual disk drive, enabling the software to read files
containing uncompressed images, apply an integer wavelet
compression algorithm, and store the smaller file back to the
SSR. The file system allowed multiple usages of the same
memory areas depending on what was needed. A given area
could easily be used at one time for raw science data storage
and at another time for compressed image storage or SC
housekeeping and engineering data storage.

Another innovation was the integration of a newly emerged
standard for the transmission of file data, the CCSDS File
Delivery Protocol (CFDP) [4]. This standard is essentially
an “FTP in space” process that transfers a file between the

spacecraft and the ground system using a guaranteed data
delivery protocol with handshaking between the flight and
ground CFDP clients to retransmit pieces of a file lost due
to data dropouts. MESSENGER became the first U.S.
mission to launch with CFDP. The ability for software to
automatically retransmit missing data rather than entire
images or files maximizes the downlink of science data.
Prior JHU/APL missions had treated data storage devices as
virtual tape recorders using ground commands to
manipulate read and write pointers.

Automated File Playback

To simplify the management of the flight file system and
CFDP, MESSENGER flight software implements an
automatic SSR playback process. A prioritized directory
structure was created for the storage of science and
engineering files. This directory structure was organized
according to downlink priority. The software “walks”
through directories in priority order, continuously
transmitting files of data. If necessary, these priorities can
be overridden. At the beginning of a data transmission
contact with Earth, the playback manager is enabled by
command and begins to transmit the data of highest priority.
The use of CFDP, the file system, and the priority directory
structure solved another concern related to the long periods
of time the spacecraft would be out of contact with Earth.
During those times, large amounts of engineering data are
stored in low-priority directories. Should an anomaly occur
while out of contact, the ground team can later promote
those files to a higher priority and downlink them to support
analysis activities. But when everything is nominal, CFDP
directives can be sent to the spacecraft to delete the
unneeded contingency files, freeing valuable SSR space and
downlink bandwidth for the science data.

Autonomy

Given the critical requirement to maintain a Sun-pointing
attitude, and the fact that there would be long periods of
time when MESSENGER would have no Earth contact, a
sophisticated autonomy system was designed into the flight
software. Relevant engineering telemetry data are collected
each second and stored in an onboard data collection buffer
(DCB). Autonomy rules, expressed in reverse polish
notation, are uploaded to the spacecraft. Each rule has
conditional logic in the premise to check data values in the
DCB. A rule evaluation engine in the flight software
processes each rule every second; for each rule that
evaluates “TRUE,” a corresponding stored command
sequence is executed to take corrective action. This rule
capability allows the autonomy system to respond to faults
and take actions such as switching to the backup flight
processor, switching to a backup star tracker, turning off
power loads if a low voltage condition arises, and so on.

Guidance and Control

MESSENGER flight software includes sophisticated G&C
attitude estimation and attitude control algorithms. The
software not only maintains a 3-axis stabilized Sun-pointing

attitude, but it also supports a number of pointing options to
facilitate instrument operations while in orbit around
Mercury, such as a limb-scanning function to support
acquiring image mosaics from the MDIS instrument. G&C
also manages the propulsion system and the flow of fuel in
tanks to support thruster maneuvers, which can be
commanded from ground control or can take place
autonomously in the event of a Sun-pointing violation or a
need to reduce momentum to slow down the reaction
wheels. G&C also controls rotation of the solar panels to
optimize power and keep the panels within a designated
temperature range, controls a phased array antenna to keep
it pointing at Earth, and controls an optical pivot platform in
the MDIS instrument.

The remainder of this paper will discuss more details about
the key features of the MESSENGER flight software.

3. ON-BOARD FILE SYSTEM

MESSENGER data are stored in files onboard the
spacecraft [5]. This differs from past JHU/APL missions
where data are stored on the SSR in raw partitions which
are managed via a custom method of data storage. With low
bandwidth and long time delays, a file system facilitates a
more autonomous method of data management.

As described previously, onboard data flow for
MESSENGER starts at the instrument and ends at the SSR.
 The file system processing software is configured by
mission operations to store telemetry packets that are
received from the instruments, as well as from internal MP
tasks, into files that are contained in a prioritized directory
shown in Figure 3. When commanded, the flight software

steps through this directory structure and starts downlinking
files in order of time received. This directory structure
allows mission operations personnel to place important
information in higher priority directories to ensure the data
will be returned expeditiously. As the data tree is traversed,
it becomes less and less likely that a particular file will ever
be downlinked due to bandwidth constraints. As a result,
low-priority engineering data are typically placed in the
lowest priority P9 directory and deleted on a periodic basis.
 If an anomaly occurs, the software provides the ability to
move files to higher priority directories to cause the flight
software to reevaluate the importance of those data.

4. CCSDS DELIVERY FILE PROTOCOL

CCSDS is a standards body consisting of the agencies and
organizations from space faring countries worldwide. The
committee members develop and discuss recommendations
in order to create a standard set of protocols and operations
across missions and across agencies. As part of this effort,
CCSDS developed the CCSDS File Delivery Protocol to
provide a method for transferring files between two points
in a space network.

In the course of developing the MESSENGER flight
software, the MESSENGER team concluded that the
spacecraft’s flight profile required a standard method for
delivering files from the spacecraft to the Mission
Operations Center (MOC) at JHU/APL. The team evaluated
CFDP, but at that time the protocol was still in its infancy
and was deemed premature for flight. The flight software
developers took a different track to create a customized
protocol for file transfer, but after an initial attempt, they

Figure 3 – MESSENGER file system downlink directory layout provides for prioritized downlinking

 4

realized that the end result was going to be remarkably
similar to CFDP and, as result, turned back to CFDP as a
solution for this problem.

CFDP is configured in multiple ways. It can use a reliable
method of file system communication where all data are
guaranteed to be transmitted, or it can perform a “best
effort” where data delivery is not assured. CFDP is tuned to
the operational environment, whether that is low Earth orbit
or deep space.

In the case of MESSENGER, the MESSENGER software
team selected a deep space configuration, and the following
example, diagramed in Figure 4, is illustrative of a typical
CFDP transaction. First, a transaction is started either via
command or the aforementioned autonomous downlink
capability. Next, initial information concerning the file is
transmitted in a metadata protocol data unit (PDU). A PDU
is the common language between CFDP entities with a
metadata PDU being a particular kind. Next, the file is
divided into smaller segments and these file pieces are
transmitted in file data units (FDUs). This continues until
an end of file (EOF) PDU is communicated to the ground
system indicating the file has been completely sent. During
this time, the ground software at the MESSENGER MOC is
accumulating the FDUs and reproducing the file local to the
MESSENGER operations team and scientists. Along with
creating the file, the CFDP ground software is also
performing an accounting procedure to ensure that all pieces

of the file have been received. If any are missing a negative
acknowledgement (NAK) is transmitted back to the
spacecraft. The NAK contains information on which pieces
of the file are currently missing in the received file. Once
the flight software receives a NAK, it retransmits the
missing piece of a file and, when that is received on the
ground, the MOC software responds with a finished
indicator (FIN). MESSENGER receives this transmission,
acknowledges to the ground that it did so, and then closes
the transaction.

The keys to CFDP in the deep space domain are the
handshake elements and their corresponding timers. CFDP
does not require a large amount of protocol handshaking,
unlike typical terrestrial file system schemes. This is
necessary in the deep space since a single handshake (such
as a sender asking a receiver if it is ready to receive a file
and the receiver responding that it is) costs one round trip
light time. This is insignificant near Earth where that round
trip light time can be measured in milliseconds, but in deep
space the round trip can be minutes or even hours.
Additionally, CFDP as configured for MESSENGER
assumes an unreliable link between the two elements in the
space network. This adds a series of timers at three points in
the data transmission. The first is started when the EOF is
sent to the ground, the second when any NAKs are sent, and
the third when the FIN is sent. There is also an overall
inactivity timer which ensures that the system as a whole is
still functioning. These timers accommodate a typical noisy

 5

Figure 4 – Typical CFDP transaction provides reliable transmission of spacecraft file data

 6

deep space link in that the EOFs, NAKs, and FINs are
resent if the CFDP entity realizes that it has never received a
response to the respective transmissions.

The MESSENGER software system uses two different
implementations of CFDP. The first is a JHU/APL custom
implementation on the spacecraft that meets the needs of a
processor- and memory-constrained mission [6]. The
second is for the ground software and is built around a
CFDP implementation developed by the NASA Jet
Propulsion Laboratory (JPL) [7]. The use of the JPL
ground software is made possible because CFDP is an
international standard. This type of software reuse would
have been impossible with a closed, proprietary file transfer
protocol.

The addition of CFDP has enabled the reliable transfer of
thousands of files, but the introduction of the protocol was
not without pitfalls (although none were directly a result of
the protocol itself). Two primary lessons learned have been
derived from the experience of operating CFDP. The first is
to ensure that the default timer settings are sufficient for
initial operations that are typically not nominal. During the
initial days of the MESSENGER mission, there were some
hiccups that resulted in prolonged transaction times, which
resulted in some files not being properly delivered to the
ground system. Since extra bandwidth was available during
this period, some laxness in the timer settings would have
allowed for the data to be properly delivered. The second
main lesson learned was to have a CFDP engineer
responsible for overseeing the closed-loop operation of
CFDP.

5. AUTONOMY

The autonomy engine software runs on the Main Processor
(MP) as well as the Fault Protection Processors (FPP). The
FPPs are loaded with the rules responsible for the spacecraft
safety and can support up to 512 rules. To date, the FPPs
have been loaded with over 200 rules, which monitor
telemetry to perform safing operations such as mode
demotion, hardware switching, and power monitoring. The
FPP rule premises also use ground configurable parameters
such as mission phase to allow specific rules to be enabled
or disabled during certain times in the mission. The MP
contains rules that perform spacecraft maintenance
sequences and can support up to 256 rules. These
maintenance rules include routine SSR file operations as
well as routine RF hardware reconfiguration sequences.

Each FPP executes identical application code that supports a
command and telemetry interface to the MP. The main
purposes of each FPP are to perform fault detection and to
execute the appropriate responses. Each FPP implements
health and safety rules that operate on data collected from
the 1553 data bus, including a state message transmitted by

the primary MP. Each FPP also serves as a 1553 bus
monitor to collect spacecraft data that can be monitored by
autonomy rules. A triggered rule can dispatch a command
or series of commands via the primary MP to correct faults.
The FPPs also have a custom serial interface to the power
distribution units to receive critical status or send special
commands if the loss of 1553 bus communications or a
failed MP is detected. This interface to the power
distribution unit allows the FPPs to take independent action
such as resetting the MP or swapping the current MP bus
controller.

6. GUIDANCE AND CONTROL

As stated in the introduction, the G&C software co-resides
with the C&DH software in the RAD6000 computer. In
fact, the G&C comprises approximately 50% of the linked
object code and requires approximately 30% of the CPU
bandwidth. In short, it is a major component of the flight
software design as it exists in MESSENGER.

If there was any one innovation that reduced the
development schedule, mission risk, and also cost of the
MESSENGER flight software it is that the G&C “truth”
dynamic and environmental algorithms, as well as the flight
control, estimation, and guidance functions, were all
modeled and tested within MathWorks’ Simulink product.
Simulink, as described by MathWorks, is a “platform for the
multi-domain simulation and model-based design for
dynamic systems” [8]. It is implemented as an interactive,
graphical, desk-top environment comprised of a set of
customizable “block” libraries dragged and dropped into the
workspace by the analyst who uses them to model the
environment and his or her control strategies. The main
strength offered by Simulink is the flexibility it offers –
inputs, outputs, parameters, and algorithms can all be
readily modified at a symbolic level. In other words, it is not
necessary to modify any extant C-code and all of the
ramifications of that process just to make a relatively simple
change. Another real advantage is the modeling of the
spacecraft post-launch. Environmental or dynamic models
can be modified at the workstation level, measured data or
observed events duplicated, and a problem or observation
quickly explained without invoking the very expensive and
often time-consuming hardware-based simulations.

Ultimately these symbolic but very real models are
converted directly into ANSI-C code using another tool
provided by MathWorks: Real Time Workshop (RTW).
This process of converting the models into a form that can
be ported and compiled and linked into flight or test-bed
environments is called auto-generation, or auto-coding, and
it is the key technology that makes it possible to convert the
highly symbolic models into “real world and real time”
applications. But that’s not the end of the auto-coding
process. There also exists a set of customized Target

 7

Language Compiler (TLC) and Perl-based utilities that
auto-code the G&C command and telemetry database and
test scripts and test parameters, as well as customized
“special purpose” interface functions. The TLC utilities
form part of the RTW build process and are invoked as part
of that process. They are able to extract fundamental model
characteristics during the RTW auto-generation process
such as the epoch rate of the models, the number of distinct
states, whether the models were multi or single tasking, and
so on. In addition, they are responsible for the auto-
generation of so-called “wrapper” functions ultimately
invoked by the Human-Generated Code (HGC) to initialize,
check run time status, and then “step” or execute the
models. In this way, the HGC does not need to know any of
the details of the internal workings or structures of the auto-
generated models. (It should be noted here that MathWorks
has subsequently released its Embedded Coder product,
which offers similar “clean” interfaces for the control and
management of the models.)

The associated Perl-based auto-generation utilities are
numerous and extensive in purpose, but their focus is in the
auto-generation of the command data base comprised,
primarily, of up to 1000 G&C parameters of differing types
and sizes. Perl scripts perform further processing of the
RTW auto-generated code. Commands and parameters are
extracted, sorted, and formatted as required by the database.
This arrangement provided the means of allowing any
change to any parameter, whether it was an addition,
removal, or a simple modification, to be modeled and
verified within Simulink, the models re-auto-generated via
RTW, the changes quickly and accurately extracted via the
Perl scripts, and the command data base subsequently
updated. What makes this process workable is a mnemonic
naming convention for inputs, outputs, and parameters that
originated at their creation within the Simulink Model. Post
RTW, these named objects become part of the auto-coded c-
code which, in turn, allowed the Perl scripts to parse, sort
and extract what was needed for the data base.. An example
of this naming convention might be:
GC_GYROPROP_FineScaleFactor - which “tells” the Perl-
based tools that the parameter is a flight (GC) parameter; it
is part of the wider set of gyro properties (GYROPROP);
and, specifically, it defines the so-called “fine scale factor”
for the gyro.

Primarily because MESSENGER is a deep space mission
and a certain amount of simplification was required from a
management perspective, parameters are further organized
into so-called “parameter blocks.” From a G&C perspective,
parameters with the same functional associations are
grouped together and loaded or “committed” to the models
at the same instant. As an example, all of the parameters
associated with, say, the functional properties of the gyro
became members of the GYROPROP parameter block. In
the end, the 1000 or so individual parameters were
organized into 100 parameter blocks with individual
parameter blocks being managed as a single logical entity in

that they are created, uploaded, verified, and stored in the
on-board memory in the same way, using the same methods.
In addition, methods were provided to load individual
parameters but, in fact, were never used.

Another Perl-based set of utilities which is parameter-
related, and which ultimately offered a great deal of
flexibility and saved vast amounts of time, was the auto-
generation of G&C test and verification scripts. These
scripts are first run at the workstation level and then, to
ensure the fidelity of the test, executed with the same
anticipated results in the hardware test bed, and often at the
spacecraft level. The same mnemonic naming discipline
allowed this to happen. Old tests could be run with new
parameters. New tests could be easily developed and
verified before scheduling expensive time on the spacecraft.
And post-launch, this allowed the creation of the parameters
necessary for early maneuvers and deployments.

The Simulink models have the flexibility to execute in a so-
called multi-tasking configuration. For the G&C there is a
50-Hz “control” task and a 1-Hz task that included the
functionality of everything else required by the G&C -
namely estimation, which includes a Kalman filter;
guidance, which includes the ephemerides for the Sun,
Earth, spacecraft, and target planet; solar array and antenna
pointing logic; and a host of complex pointing modes and
their associated short cuts derived from the on-board
ephemeris. The ability to configure the Simulink models in
a multi-tasking configuration significantly off-loads the
CPU, making it possible to let the G&C run concurrently
with the C&DH.

The control task is a high-priority task that was measured to
take approximately 5 ms out of each 20-ms time-slice –
thereby requiring about 25% of the CPU bandwidth. The
low-rate task executes once a second, starting sometime
after the start of the second and ending sometime before the
start of the next. The data exchange between the two tasks is
managed either by the HGC or by so-called “rate transition”
blocks within the Simulink models themselves. It is
estimated that if all the G&C functionality were allocated to
a single high-priority task, it would require close to 95% of
the available CPU bandwidth.

Lastly, one of the main requirements of a deep space
mission providing extensive reconnaissance of a remote
planet is the need for large volumes of Sun, Earth, and
target planet ephemeris data which must be uploaded to the
spacecraft on a weekly and sometimes on a daily basis. For
MESSENGER this volume of data is estimated to be about
48 kbytes of data per week in the form of Chebyshev
polynomials. To off-load the stress this introduces to the
C&DH macro and time-tagged command functions, the
G&C included a so-called “ephemeris manager” that buffers
the ephemeris data, verifies them, reports their status – how
many spans are valid, how many are expired, etc. – and,

 8

finally, provides the next valid Chebyshev to the G&C
ephemeris models when requested to do so.

7. SUMMARY

The JHU/APL MESSENGER flight software team
considered several characteristics in developing the flight
software for the mission. These included low downlink
rates, periods of limited or no communication, and long
light time delays. Operating in deep space impacted the
design of autonomy, data handling, and guidance and
control. The software architecture outlined in this paper
continues to operate nominally during MESSENGER’s
third year in space.

ACKNOWLEDGEMENTS

The authors of this paper would like to thank the rest of the
members of the JHU/APL MESSENGER flight software
and G&C analyst teams who contributed to the successful
deployment of the this architecture.

REFERENCES

[1] Santo, A. G., R. E. Gold, R. L. McNutt, Jr., S. C.
Solomon, C. J. Ercol, R. W. Farquhar, T. J. Hartka, J. E.
Jenkins, J. V. McAdams, L. E. Mosher, D. F. Persons, D.
A. Artis, R. S. Bokulic, R. F. Conde, G. Dakermanji, M.
E. Goss, Jr., D. R. Haley, K. J. Heeres, R. H. Maurer, R.
C. Moore, E. H. Rodberg, T. G. Stern, S. R. Wiley, B. G.
Williams, C. L. Yen, and M. R. Peterson, “The
MESSENGER mission to Mercury: Spacecraft and
mission design,” Planet. Space Sci., 49, 1481-1500, 2001.

 [2] Solomon, S. C., R. L. McNutt, Jr., R. E. Gold, M. H.
Acuña, D. N. Baker, W. V. Boynton, C. R. Chapman, A.
F. Cheng, G. Gloeckler, J. W. Head, III, S. M. Krimigis,
W. E. McClintock, S. L. Murchie, S. J. Peale, R. J.
Phillips, M. S. Robinson, J. A. Slavin, D. E. Smith, R. G.
Strom, J. I. Trombka, and M. T. Zuber, “The
MESSENGER mission to Mercury: Scientific objectives
and implementation,” Planet. Space Sci., 49, 1445-1465,
2001.

 [3] Gold, R. E., S. C. Solomon, R. L. McNutt, Jr., A. G.
Santo, J. B. Abshire, M. H. Acuña, R. S. Afzal, B. J.
Anderson, G. B. Andrews, P. D. Bedini, J. Cain, A. F.
Cheng, L. G. Evans, W. C. Feldman, R. B. Follas, G.
Gloeckler, J. O. Goldsten, S. E. Hawkins, III, N. R.
Izenberg, S. E. Jaskulek, E. A. Ketchum, M. R. Lankton,
D. A. Lohr, B. H. Mauk, W. E. McClintock, S. L.
Murchie, C. E. Schlemm, II, D. E. Smith, R. D. Starr, and
T. H. Zurbuchen, “The MESSENGER mission to
Mercury: Scientific payload,” Planet. Space Sci., 49,
1467-1479, 2001.

 [4] CCSDS File Delivery Protocol (CFDP).
Recommendation for Space Data System Standards,
CCSDS 727.0-B-1. Blue Book. Issue 1. Washington,
D.C.: CCSDS, January 2002.

[5] Krupiarz, C. J., D. A. Artis, A. B. Calloway, C. M.
Frangos, B. K. Heggestad, D. B. Holland, and W. C.
Stratton, “File-based data processing on MESSENGER,”
Proceedings of the 5th International Academy of
Astronautics International Conference on Low-Cost
Planetary Missions, Special Publication SP-542, edited by
R. A. Harris, pp. 435-442, European Space Agency,
Noordwijk, The Netherlands, 2003.

[5] Krupiarz, C. J., S. C. Burleigh, C. M. Frangos, B. K.
Heggestad, D. B. Holland, K. M. Lyons, and W. C.
Stratton, “The use of the CCSDS file delivery protocol on
MESSENGER,” Space Operations 2002 Conference,
World Space Congress, American Institute of Aeronautics
and Astronautics, Paper T5-35, 8 pp., Houston, TX,
October 2002.

[6] Stratton, W. C., C. M. Frangos, J. J. Harrison, and D. B.
Holland, “Reuse of the JPL CFDP software in the APL
Common Ground System,” Proceedings of the 5th
International Symposium on Reducing the Cost of
Spacecraft Ground Systems and Operations (RCSGSO),
Paper 103-A0036, 8 pp., Pasadena, CA, July 2003.

 9

 [7] Krupiarz, C. J., B. K. Heggestad, and R. D. Carper,
“Flying CFDP on MESSENGER,” International
Telemetering Conference 2004, Paper 04-14-02, 8 pp.,
San Diego, CA, October 2004.

[8] MathWorks Simulink Corporate Website, URL:
http://www.mathworks.com/products/simulink

BIOGRAPHY

David A. Artis is a member of the Principal Professional
Staff in the Embedded Applications Group
of The Johns Hopkins University Applied
Physics Laboratory, having joined the
Space Department in 1981 after completing
an M.A. in Physics at Indiana State
University. He was the mission software
systems engineer for the MESSENGER
mission. Previously he was the mission

software systems engineer for the Far Ultraviolet
Spectroscopic Explorer mission and was the command &
data handling system flight software lead engineer for the
Near Earth Asteroid Rendezvous spacecraft.

Brian K. Heggestad is a Senior Professional Staff Member

at The Johns Hopkins University Applied
Physics Laboratory's Space Department.
 He has developed flight and test
software for several missions including
Near Earth Asteroid Rendezvous
(NEAR), Far Ultraviolet Spectroscopic
Explorer (FUSE), and New Horizons.
He received his MS in Electrical
Engineering at The Johns Hopkins

University.

Christopher J. Krupiarz is a Senior Professional Staff
Member in the Embedded Applications
Group of The Johns Hopkins University
Applied Physics Laboratory's Space
Department where he develops and
tests flight software for missions such as
CONTOUR, MESSENGER, and New
Horizons. He is also involved in various
activities regarding space networking

including being the Principal Investigator on the Mars

Technology Program’s Next Generation Mars Protocol
Suite. He received his B.S. in Computer Science (1989)
from Michigan State University.

M. Annette Mirantes is a member of the Senior
Professional Staff at The Johns Hopkins
University Applied Physics Laboratory.
She received a BS in Electrical
Engineering from Purdue University
and an MS in Systems Software
Engineering from George Mason
University. She previously developed
flight software for numerous missions at
Orbital Sciences Corporation including

the ORBCOMM constellation, the Far Ultraviolet
Spectroscopic Explorer (FUSE), and the Solar Radiation
and Climate Experiment (SORCE). At JHU/APL, she is
the flight software lead for the MESSENGER Project.

Doug Reid is a member of the Senior Professional Staff in
the Embedded Applications Group of
The Johns Hopkins University Applied
Physics Laboratory's Space
Department, where he develops and
tests Guidance and Control flight
software as well as dynamic and
environmental simulation software for
missions such as TIMED, CONTOUR,
MESSENGER, STEREO, and New
Horizons. His interests include

astronomy, celestial navigation, arboriculture, entomology,
and sedimentary geology. He received his B.Sc. in Applied
Science from the Royal Military College, Canada, and a
Masters in Applied Physics from The Johns Hopkins
University.

