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ABSTRACT 
This paper describes techniques to design stress tests, classifies the types of 
problems found during these types of tests, and analyzes why these problems 
are not discovered with traditional unit testing or acceptance testing.  The 
findings are supported by citing examples from three recent embedded software 
development programs performed by the Johns Hopkins University Applied 
Physics Laboratory where formal stress testing was employed.  It also defines 
what is meant by the robustness and elasticity of a software system.  These 
findings will encourage software professionals to incorporate stress testing into 
their formal software development process. 
 

 
 

1. INTRODUCTON 
Traditional Software Acceptance Testing is a standard phase in nearly every 
software development methodology.  Test engineers develop and execute tests 
that are defined to validate software requirements.  The tests tend to be rigid with 
specific initial conditions and well-defined expected results.  The tests typically 
execute software within the limits prescribed by the software design.  While these 
tests are often complemented with System Tests or Use Case Tests, these 
higher level scenarios still conform within the design bounds of the software. 
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Software Stress Testing, however, runs counter to these traditional approaches 
as demonstrated in Table 1.  Stress testing involves intentionally subjecting 
software to unrealistic loads while denying it critical system resources.  The 
software is intentionally exercised “outside the box” and known weaknesses and 
vulnerabilities in the software design may be specifically exploited.  Degraded 
performance of a system under stress may be deemed perfectly acceptable, 
thus, the interpretation of test results and definition of pass / fail criteria is more 
subjective.  Furthermore, a test that stresses one aspect of the software may 
lead to undesirable side effects in another area of the software thus the entire 
system behavior as a whole must be evaluated to properly analyze the results. 
 

Software Acceptance Testing Software Stress Testing 
 
Black Box Testing.  No need to 
understand software internals 
 
Tests are designed to verify that 
software meets requirements 
 
Tests exercise software within 
acceptable bounds 
 
Pass / Fail criteria are clearly 
defined 
 

 
White Box Testing.  Tests target  
weak spots in the software design 
 
Tests attempt to “break” the 
software 
 
Tests intentionally violate 
constraints to stress software 
 
Pass / Fail criteria are subjective 

Table 1  Comparison of Acceptance Testing versus Stress Testing 
 

1.1 What can be learned by “breaking” the software 

For critical embedded software applications, the user has an expectation that the 
software is robust.  The dictionary defines robustness as the property of being 
powerfully built or sturdy; one step below bulletproof.  For software, this means 
that the implementation should demonstrate resiliency.  It is permissible for the 
software to operate in a degraded fashion (e.g., dropping commands or missing 
data) while under stress but the degradation should be graceful and recoverable.  
A lack of robustness would lead to unacceptable behavior such as writing 
corrupted data or resetting the processor. 
 
Secondarily, the embedded software should demonstrate elasticity.  The 
dictionary defines elasticity as the property of returning to an initial form or state 
following deformation.  In a software context this means that when the stress is 
removed the system should return back into its normal operating state and have 
full functionality restored.  A lack of elasticity would leave the software operating 
in a degraded mode after the stress has been relieved. 



ESC-302  Stress Testing Embedded Software Applications Page 3 of 3 

 
While stress testing can validate the robustness and elasticity of the software 
system, that validation may not be enough to justify the time and effort required 
to develop and execute such tests.  However, there is an additional benefit to 
stress testing that may not be as readily apparent.  Stress testing exposes design 
flaws and implementation bugs that are difficult or impossible to discover under 
traditional testing approaches.  Furthermore, these flaws and bugs are often 
present even when the system is not under stress.  In such cases, the stress test 
magnifies these inherent problems allowing them to be more easily detected.  
Stress testing allows these defects to be corrected before the software is 
deployed into the user community. 

2. DESIGNING A STRESS TEST 
Although there is no single approach to designing a stress test, a recommended 
approach is shown in Figure 1.  With this method, the CPU loading is increased 
at the start of the overall test.  Next, a series of subtests are run against the 
heavily loaded processor.  Each subtest exercises some type of targeted stress.  
The type of stress is highly dependent upon the system under test and could 
include items such as overflowing input buffers, simulating rapid keystrokes, etc.  
It is perfectly valid to inspect the software design and inject stress that targets 
specific areas such as input queues, interrupt service routines and critical 
resources.  As each subtest executes, a qualitative measure of performance 
should be validated (i.e., robustness).  This requires establishing an acceptable 
level of degraded behavior for each subtest.  Finally, after the series of subtests 
completes, the CPU is returned to nominal levels and it is verified that the 
software system returns to its nominal operating state to confirm the elasticity of 
the system. 
 
To simplify development, the subtests can often be developed, debugged and 
executed “standalone” (while the system is not under stress) to validate the test 
scripts and establish a baseline behavior before they are incorporated into the 
larger Software Stress Test.  This provides a level of modularity to the overall 
stress test. 
 
 

 

Figure 1  Structure of a Software Stress Test 
 

2.1 What is a reasonable target CPU load? 

One obvious way to place the software under stress is to perform steps to 
increase the CPU load.  Increasing the CPU load is especially important when 



ESC-302  Stress Testing Embedded Software Applications Page 4 of 4 

stress testing pre-emptive multitasking systems.  Software designers spend 
considerable effort assigning task priorities in a pre-emptive system to ensure 
that all real-time deadlines are met.  It has been shown that even if task priorities 
are poorly assigned, task deadlines will usually be met when the overall CPU 
load is less than about 85%.  Said another way, having 15% overall free CPU 
load can provide enough margin to mask flaws regarding task priority 
assignments [LEHOCZKY01].  Since one purpose of the stress test is to expose 
these flaws, the test should have a target CPU load of 90% or more, if possible. 

2.2 Other ways to stress the system 

Increasing CPU load is just one of the ways to stress a software system.  Other 
stress methods, which are typically employed in the subtests, include: 
 

• Maximizing I/O data rates 
• Maximizing data bus usage 
• Maximizing interrupt rate 
• Exhausting available memory 
• Overflowing queues 

 

2.3 Characteristics of a Stress Test 

Ideally, stress tests should be scripted and repeatable.  While stress testing may 
seem less precise than traditional testing because of the subjectivity in evaluating 
system performance and defining acceptable behavior, it does not mean that the 
test process is any less formal.  One possibility with stress testing is that a 
problem may be observed one time but cannot be repeated.  While not a fool-
proof solution, using scripts that can repeat a test will greatly increase the 
likelihood that intermittent problems can be recreated improving the probability 
that engineers can isolate the root cause. 
 
Additionally, post-test analysis should always be performed to identify any 
unexpected anomalies.  Checklists can ensure that all necessary data points are 
verified.  If possible, scripting can to verify checklist items during the stress test.  
Frequently there is a side effect when stressing the system in one area that may 
have an unexpected effect on another area.  Without a rigorous approach to 
reviewing all data, these side effects may not be observed which undermines a 
key benefit of Software Stress Testing. 

3. REAL WORLD RESULTS 
The Johns Hopkins University Applied Physics Laboratory (JHU/APL), located in 
Laurel, Maryland, has developed spacecraft flight software for three recently 
launched NASA missions.  The embedded software is highly critical (a serious 
fault can result in loss of mission) and is expected to operate continuously for 
long periods of time (i.e., years) as shown in Table 2. 
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Mission Launch Duration 
MErcury Surface, Space ENvironment, 
GEochemistry, and Ranging 
(MESSENGER) 
 

August 2004 8 years 

New Horizons 
(Pluto-Kuiper Belt Mission) 
 

January 2006 9+ years 

Solar TErrestrial RElations Observatory 
(STEREO) 
 

October 2006 2+ years 

 
Table 2  Recent JHU/APL Software Development Programs 

 
All three software development efforts followed a formal software development 
life cycle including requirements analysis, design, implementation, unit and 
integration testing, requirements-based testing and system-level acceptance 
testing.  Formal Software Stress Testing was performed on the software near the 
end of the software life cycle using the techniques described in this paper.  The 
effort required to develop and execute a stress test was far greater than that 
required for any other individual software acceptance test.  Overall, the stress 
tests represented about 10% of the entire software acceptance test effort. 
 
The stress testing uncovered a total of 32 problems across the three software 
development efforts.  The next subsections provide a detailed analysis of four of 
the failures to demonstrate typical deficiencies discovered in stress testing.  That 
is followed by a synopsis which classifies all 32 problems by type and analyzes 
trends and tendencies regarding the problems found while stress testing. 

3.1 Case #1:  Software Missed Receiving Some Commands 
When CPU Was Heavily Loaded 

A stress subtest was designed to issue a stream of 1000 commands at the 
highest possible rate to the software while the CPU was heavily loaded (> 90%) 
but not overloaded.  The commands are buffered in hardware and the software 
must service the buffer before it is overwritten.  During the stress subtest, five of 
the 1000 commands were dropped even though the CPU load during the subtest 
never reached 100% (see Figure 2).  Had the CPU usage peaked at 100% while 
the commands were received, then dropped commands may have been an 
acceptable degraded behavior.  But when commands were dropped even though 
there was still free CPU (albeit less than 10%), deeper investigation was 
warranted. 
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Figure 2  Software missed receiving some commands 
 
The investigation revealed a problem with task priorities (see Figure 3).  There 
was a Command Processing Task designed to read the commands from the 
hardware buffer.  The buffer had to be serviced every 32 milliseconds by the task 
to avoid an overrun, thus, this was a hard deadline.  A second task, the Health 
Monitor Task, was running at a higher priority and periodically preempting the 
first task.  This higher priority task was responsible for performing all of the 
autonomous health and safety monitoring on the spacecraft and initiating 
corrective actions in the event of a fault.  However, the Health Monitor Task ran 
only once per second and had a longer real-time deadline (one second); the task 
simply had to finish execution before it was time for that task to run again. 
 

BEFORE 

 

AFTER 

 

Figure 3  Interaction between Command Processing and Health Monitor 
Tasks 

 
Investigation revealed that the software designers fell into a common trap of 
assigning a higher priority to an “important” task (like monitoring spacecraft 
health) rather than assigning the higher priority to the task with the shortest real-
time deadline.  This allowed the Command Processing Task to be starved and it 
occasionally missed servicing the buffer resulting in dropped commands. 
 
When the priorities were corrected and the same subtest repeated, all 1000 
commands were successfully received and both tasks met their real-time 
deadlines despite no overall change in CPU loading. 
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3.2 Case #2:  Processor Reset when Available Memory Buffers 
Were Exhausted 

A subtest was created which maximized data input rates so that the software 
would exhaust all available memory.  The test targeted a software 
implementation that included a pool of fixed size memory buffers that were 
allocated and freed by tasks in the system.  Generally, tasks allocated buffers to 
store and process input data and then released the buffers when processing was 
complete.  When uncharacteristically high inputs were driven into the system, the 
software allocated buffers more quickly than it could free them, eventually driving 
to a state with no free buffers (see Figure 4).  It was expected that the software 
would then drop input data (since buffers were not available) but continue to 
execute in a degraded mode of operation.  Instead, what was observed was that 
when the buffers were exhausted, the processor reset. 
 

 

Figure 4  Maximize input data rate to exhaust memory 
 
Investigation uncovered a classic programming error where a return value was 
not being checked (see Figure 5).  A utility GetBuffer() function was used 
throughout the software to allocate a buffer from the fixed size pool.  The function 
provided a pointer to the buffer as well as a return code to indicate whether a 
buffer was available.  In one instance in the software, the return code was not 
checked and the resulting “null” buffer was used causing arbitrary memory to be 
overwritten leading to a watchdog reset.  Once the problem was isolated, the 
remedy was to check the return code before using the buffer. 
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BEFORE 

 

AFTER 

 

Figure 5  Checking return code of a call to GetBuffer() 
 
At a first glance, one may wonder why this was not caught in unit testing.  The 
problem is that the unit test focuses on paths of execution.  If the developer 
forgets to implement the error checking logic, he will not test for it because there 
is no error path to test. 
 
It should be noted that there were 65 instances of calls to GetBuffer() throughout 
the software and this was the only instance that did not have the proper error 
checking.  By stressing the software, this single stress test validated the error 
handling of all 65 invocations of GetBuffer(). 
 
Once the coding error was corrected and the test repeated, the desired graceful 
degradation was observed – some input data was lost but the software continued 
to operate (i.e., robustness).  When input data rates were returned to nominal 
levels, full software operation was restored (i.e., elasticity). 

3.3 Case #3:  Unexpected Command Rejection When CPU Was 
Heavily Loaded 

A stress subtest was devised that sent certain commands to the software while 
the CPU was heavily loaded but not overloaded.  When the software receives 
these commands it performs an internal consistency check on the command 
fields before accepting it for further processing.  Intermittently, the software was 
rejecting some of the commands because they failed this consistency check 
which indicated that the command was garbled.  When the exact same command 
was later sent to the software, it was accepted by the software as valid.  The 
problem appeared to be random. 
 
The investigation into the behavior revealed that two tasks were using the same 
unprotected shared memory resource (see Figure 6).  The Command Processing 
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Task used a Stack data structure in memory to validate the command data 
arguments.  A higher priority Health Monitor Task used the same data structure 
to validate previously loaded health monitor checks.  Occasionally, the higher 
priority Health Monitor Task would preempt the Command Processing Task while 
it was in the middle of validating a command.  The higher priority task would 
“corrupt” the Stack, thus when the Command Processing Task resumed after 
preemption, it appeared that the command that it was processing was invalid. 
 

BEFORE AFTER 

Figure 6  Tasks accessing an unprotected resource 
 
 
The root cause was further masked by the fact that the two tasks actually called 
a common function that performed the validation check and did not manipulate 
the Stack data structure directly.  This common function was not reentrant 
because it used a static Stack data structure. 
 
The resolution was to separate the common function into two functions, each 
with its own Stack data structure.  The subtest was repeated and the software 
worked as expected with no rejected commands. 
 
This is an example of a flaw that was inherent in the implementation and could 
have struck at anytime regardless of CPU load.  However, it is more likely to 
strike when the CPU is loaded because there are more opportunities for the two 
tasks to interact.  That is why the problem presented itself so easily under stress 
conditions.  This type of problem is rarely discovered in unit testing because unit 
tests are typically run in their own thread of execution and reentrancy problems 
will rarely reveal themselves in single-threaded environments.  It’s only in a 
multitasking environment with frequent task preemptions that a problem like this 
will rise to the surface. 

3.4 Case #4:  Processor Reset When RAM Disk Was Nearly Full 

The software supported a 1 Gigabyte (GB) RAM disk.  The software ingested 
high speed scientific data from an imaging instrument and stored this data onto 
the disk.  A stress subtest was designed to generate image data until the RAM 
disk was completely filled (see Figure 7).  This is analogous to snapping pictures 
with a digital camera until the memory card is full.  It was expected, once the disk 
was full, that the software would then drop subsequent image data but otherwise 
continue normal operations.  However, when the test was executed, the 
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processor unexpectedly reset when the RAM disk reached about 98% of its 
capacity. 
 

 

Figure 7  Recording to RAM disk until completely full 
 
The software and underlying operating system organized the RAM disk into 
65,536 clusters of equal size (16 Kilobytes per Cluster).  Each cluster was 
marked by the operating system as used or free (See Figure 8).  When the 
software needed to find a new cluster to store data it executed a system call that 
returned the address of a free cluster.  
 

 

Figure 8  Organization of RAM Disk into clusters 
 
Analysis showed that the search time to find a free cluster grew nearly 
exponentially as the RAM disk usage approached capacity.  This was because 
the algorithm employed to find a free cluster performed a linear search checking 
cluster after cluster until it discovered one marked free.  Figure 9 shows the 
average number of attempts (N) required to find a free cluster as a function of 
RAM disk percentage full (p) using this inefficient brute force search algorithm.  
The number of attempts, and thus the time required to find a free cluster, rises 
dramatically around the 90% usage level.  It requires an average of 10 attempts 
to find a free cluster when the RAM disk is 90% used, 50 attempts at 98% used 
and a whopping 32,768 attempts when only one free cluster remains!  Thus, 
search times that took hundreds of microseconds on a nearly empty RAM disk 
were now measured in seconds when the RAM disk was nearly full. 
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Figure 9  Number of attempts required to find a free cluster  
 
Thus it follows that during the subtest as the RAM disk was filling, the search 
time to find a free cluster took longer and longer, eventually causing other tasks 
to be starved, leading to a watchdog reset. 
 
This search algorithm, however, was in the operating system rather than the 
software application code.  Although the team had access to the operating 
system source code as well as an approach for a much improved search 
algorithm, they were reluctant to change the operating system late in the 
software development cycle.  Instead, an operational constraint was established 
to maintain the RAM disk at no more than 95% used.  No change was made to 
the software. 

3.5 Synopsis of All Problems Found During Stress Testing 

As mentioned earlier, 32 problems were formally reported from stress testing 
across the three software development programs.  Test engineers were 
encouraged to document problems regardless of root cause.  As such, the total 
includes problems that were subsequently determined to be non-software issues.  
The 32 problems are organized by type and presented in Figure 10. 
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Problem Type Definition 
Multitask Errors Software Errors attributed to complexities of a multitasking environment such as: 

• Tasks that starve other tasks (causing missed real-time deadlines or 
watchdog resets) 

• Omitting semaphore protection around shared resources 
• Non-reentrant procedures 
• Deadlocks 
• Priority Inversion 
• Race Conditions 

Major Coding 
Errors 

Software Bugs that result in unpredictable or undesirable execution such as: 
• Referencing uninitialized variables 
• Missing ‘break’ statement in a C-Language case statement 

Minor Coding 
Errors 

Software Bugs with minimal operational consequence such as: 
• Reporting wrong ID in an anomaly message 
• Incrementing wrong error counter 

Acceptable 
Behavior 

Observing degraded operation while a constraint is violated.  Example: 
• Sending 15 commands per second (when software is designed to accept 

10 commands per second) results in software missing some commands. 
Constraint Causing an unrecoverable problem when constraint is violated.  Example: 

• Sending 15 commands per second (when software is designed to accept 
10 commands per second) causes processor to reset 

User 
Documentation 
Error 

Discrepancies between user documentation and actual software implementation 

Test Equipment 
Problem 

Problems that originally appear to be software issues but are later attributed to 
failure of test equipment 

Unexplained Problems that occur whose root cause cannot be identified.  Typically the problem is 
not reproducible. 

Figure 10  Classification of all problems identified during Stress Testing 
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3.5.1 Software Problems Identified by Stress Testing 

The types identified on the right hand side of the pie chart address 16 of the 32 
problems and demonstrate those whose root cause is an error in the software 
design or implementation.  All of these errors resulted in modifications to the 
software to correct the issue. 
 
The most prevalent type of software error identified during stress testing was 
multitask errors.  There were seven such errors across the three programs.  
These are errors attributed to the complexities of task interconnections in a 
multitasking environment.  This result is not surprising given that stress tests 
“excite” the interactions between tasks and increase the likelihood of missed real-
time deadlines, deadlocks, race conditions, reentrancy issues and other 
multitasking related errors  Two of the four cases presented earlier (incorrect task 
priorities and non-reentrant code) fall into this category. 
 
A second type of software error was major coding errors and three such errors 
were identified.  These are logic errors in the code that result in unexpected or 
undesirable behavior and three such instances were found during the stress 
testing programs.  The earlier case where a return value was not checked before 
a buffer was accessed is an example of major coding error. 
 
Also, six minor software errors were found.  These represent errors with 
minimal operational consequence such as reporting the wrong ID code in a log 
message or incrementing the wrong error counter.  Since stress testing often 
executes off-nominal paths through the code, it follows that these types of 
problems are exposed in these tests. 

3.5.2 Other Problems Identified by Stress Testing 

The left hand side of the pie chart reveals problems whose root cause was 
attributed to something other than the software under test.  This is not unusual 
since the root cause of an apparent test problem is not always immediately 
known. 
 
There were seven instances of user documentation errors discovered during 
stress tests.  These were inconsistencies between the user documentation and 
the actual software implementation that resulted in an update to the document.  
 
Five test equipment problems were noted which covered problems that were 
isolated to the support equipment used to run the tests and inject faults.    
 
There was one case of acceptable behavior where further analysis deemed that 
the degraded behavior of the system under stress was acceptable. 
 
There were two cases where stress testing uncovered a previously unrealized 
constraint on the system.  The case presented earlier where the processor reset 
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when the RAM disk was nearly full is an example of a problem identified as a 
constraint.  Recall that no software change was made, however, an operational 
constraint was established to document the limitation. 
 
Finally, there was one instance of an unexplained problem where the processor 
unexpectedly reset.  The problem could not be duplicated despite repeating the 
same test multiple times.  Based on available data it is believed that the problem 
was related to an anomaly with test equipment, however no definitive 
determination could be made. 

4. SUMMARY 
Software Stress Testing should be an essential component for any critical 
embedded software development program.  While typically not written as a 
formal requirement, users have an expectation that the software demonstrates 
the characteristics of robustness and elasticity in response to any user actions.  
Furthermore, stress testing can expose design flaws and software bugs that are 
not easily uncovered using traditional testing methods.  The problems uncovered 
in stress testing often involve the complex interactions between tasks such as 
missed real-time deadlines, deadlocks, race conditions, and reentrancy issues.  
A formal and rigorous approach to Software Stress Testing can uncover serious 
problems before the software is released into the user community. 
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