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The solution of a nonlinear system of equations subject to constraints that involve mini-

mizing a scalar performance index is required for many applications, particularly trajectory

optimization. Numerical solutions are obtained on a computer by searching the space of inde-

pendent parameters until the equations of constraint and condition of optimality are satisfied.

A constrained parameter search and optimization algorithm based on the method of explicit

functions is described. A fundamental equation describing parameter optimization subject

to constraints is developed. This equation is used to show the relationship of the method of

explicit functions to other optimization methods including Lagrange multipliers and gradient

projection. A second-order gradient search algorithm is described. Another algorithm is de-

veloped to enable inequality constraints to control the second-order gradient search algorithm.

As an example, the first two trajectory correction maneuvers of the MESSENGER mission to

Mercury are optimized to minimize propellant consumption.

Introduction

The problem of constrained parameter optimization involves finding the solution of a system of equations
that satisfy a number of constraints and minimizes or maximizes some performance criterion which is a scalar
measure of the cost of satisfying the constraints. A simple example of a problem of constrained optimization
is finding the largest rectangle that will fit inside an ellipse. Except for a few simple examples, problems
of constrained optimization are difficult to solve analytically. Numerical solutions may be obtained on a
computer with algorithms designed to search the space of independent parameters and find the point within
this space that satisfies all the constraints specified and minimizes a scalar performance index that is a given
function of the independent parameters.

When properly formulated, an optimization algorithm may be used to solve a wide variety of problems
that extend beyond simple parameter optimization. For example, problems of the calculus of variations may
be solved by representing a continuously varying control function by a finite set of control parameters and
solving for the parameters. The trajectory optimization problem of finding the optimum programmed thrust
direction for a low thrust rocket engine may be solved in this fashion.

An optimization algorithm is described1−4 that solves the problem of constrained optimization by the
method of explicit functions. This method was originally devised to minimize propellant expenditure for
the Viking mission to Mars. Additional arbitrary constraint functions are adjoined to the given equations
of constraint to completely span the space of the independent parameters. The search is performed on
these arbitrary parameters to obtain the values of these parameters that minimize the performance criterion.
First derivatives of the constraint functions with respect to the independent parameters are used to drive
the dependent constraint variables or target variables to satisfy the desired constraints, and second partial
derivatives of the minimization criterion with respect to the same independent parameters are used to drive
the optimization condition to zero. The search is referred to as a second-order gradient search.

The partial derivatives that are required by the optimization algorithm may be obtained analytically or
by finite difference. Analytic partial derivatives are often not pursued because of the difficulty in obtaining
the partial derivatives, particularly the second derivatives. A problem with exact second derivative finite
difference equations is the large number of function evaluations that are required to compute the derivatives
for one iteration. These grow as the square of the number of parameters. Approximate techniques may be
used to accelerate the computation of the second derivatives, and a method along the lines suggested by
Fletcher-Powell-Davidon is given in References 5 and 6. However, these acceleration techniques generally
work well only for the problems they were designed to solve and require modification for specific problems
making parameter optimization more of an art than a science.

†
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Because of non linearity and ill conditioned problems, a second-order gradient search will often diverge.
An algorithm is developed to enable inequality constraints to control the search for a solution. Constraining
the dependent target variables to an interval permits the optimization algorithm to find a minimum solution
within the interval and prevents the search from diverging to a local maximum or inflection point outside
the interval. As an example, the first two trajectory correction maneuvers of the MErcury Surface Space
ENvironment, GEochemistry, and Ranging (MESSENGER)mission to Mercury are optimized to minimize
propellant consumption.

Statement of Problem

A performance index (J) is defined that is a function of N independent variables (U). We also have M
equations of constraint (M < N) that define the target variables (ZC), and the equations of constraint are
also functions of U. Thus we have

J = f(U) (1)

ZC = g(U) (2)

and
J = f(U1, U2, U3, . . . UN )

ZC1 = g1(U1, U2, U3, . . . UN )

ZC2 = g2(U1, U2, U3, . . . UN )
· · ·

ZCM = gM (U1, U2, U3, . . . UN )

The problem is to find a U∗ such that
ZC(U∗) = C (3)

where C are constant target parameters and J is a minimum for all U.

Condition for Optimum Solution

A simple method, in principle, for solving the problem of constrained optimization is to solve the
equations of constraint (g) for a selected subset of the independent parameters (UC) and substitute these
expressions into the objective function (f), thus reducing the number of unknowns from N to N − M ;
where M is the number of constraint functions. The partial derivative of J with respect to the remaining
independent parameters UF are obtained and set equal to zero. These equations are solved in conjunction
with the equations of constraint. The selection of which independent control parameters to include in UF

or UC is arbitrary. However, the choice may have some effect on performance when a numerical solution is
sought.

The method of explicit functions described in this paper carries this concept a step further. In place of
the arbitrary selection of control parameters, additional arbitrary constraint functions (ZF ) are defined to
bring the total number of Z parameters to N. The ZF functions are not completely arbitrary in that a one to
one mapping must exist between U and Z. At the solution point, any change in U holding ZC constant will
increase J . Since a one to one mapping must exist, any unique change in ZF holding ZC constant will cause
a unique change in U holding ZC constant and consequently increase J . Mathematically, setting equal to
zero the partial derivative of J with respect to ZF holding ZC constant is a necessary and sufficient condition
for a stationary point, which is a minimum if J is properly defined and ZC is properly constrained. As long
as there exists a one to one mapping between U and Z, the same minimum is obtained whether ZF or UF

is selected to minimize J . The performance criterion and augmented equations of constraint are given by

J = f(U1, U2, U3, . . . UN )

ZC1 = g1(U1, U2, U3, . . . UN )

ZC2 = g2(U1, U2, U3, . . . UN )
· · ·

ZCM = gM (U1, U2, U3, . . . UN )
· · ·

ZF N = gN(U1, U2, U3, . . . UN)
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and the solution is obtained by solving
ZC = C (4)

∂J

∂ZF

= 0 (5)

Observe that the above solution reduces to direct elimination if ZF is taken to be identically equal to UF .

Because of the difficulty in obtaining the inverse functions analytically, direct solution of the above
equations is only practical for relatively simple systems of equations. For complex systems, solutions may
be obtained by searching using Newton’s method. The theory behind techniques currently in use such as
Lagrange multipliers and gradient projection follow directly from the method of explicit functions.

The method of explicit functions involves adjoining to the equations of constraint some additional
equations that define the parameters ZF . The ZF parameters replace the independent parameters UF

selected by the method of direct elimination for the purpose of minimizing J . An equation that relates
the optimization condition to the independent control parameters, equations of constraint and performance
criterion may be obtained by application of the chain rule.

∂J

∂U
=

∂J

∂Z

∂Z

∂U
(6)

The partial derivatives of Z with respect to the independent parameters U are contained in a square matrix
of dimension N by N. The partial derivatives of J with respect to U and Z are row matrices also of dimension
N. Partitioning the above matrices separating the ZC dependent elements from the ZF dependent elements
yields

[

∂J

∂U

]

=

[

∂J

∂ZC

∂J

∂ZF

]





∂ZC

∂U

∂ZF

∂U



 (7)

The above partitioned matrices may be factored to further separate those sub matrices dependent on ZC

from those dependent on ZF , and after rearranging terms the following equation is obtained:

∂J

∂U
− ∂J

∂ZC

∂ZC

∂U
=

∂J

∂ZF

∂ZF

∂U
(8)

Equation 8 provides a fundamental relationship that may be used to tie together various methods of con-
strained parameter optimization including the methods of Lagrange multipliers, gradient projection and
explicit functions. Comparison of these methods provides insight into which approach may work best de-
pending on the problem.

Method of Lagrange Multipliers

The classic solution of constrained parameter optimization was derived by the eighteenth-century math-
ematician Joseph Luis Lagrange. This solution is particularly appealing since a choice of independent
parameters is not necessary. Referring to Equation 8, at the solution point, the right side is zero because
the partial derivative of J with respect to the ZF elements must be zero as required by Equation 5:

∂J

∂U
− ∂J

∂ZC

∂ZC

∂U
= 0 (9)

The terms of Equation 9 may be readily obtained from the equations of constraint and the equation for
the performance index with the exception of the partial derivative of J with respect to the ZC . Lagrange’s
insight was to make the elements of this term parameters to be solved for in conjunction with the equations
of constraint. These parameters are called Lagrange multipliers and are defined by

λ = − ∂J

∂ZC

(10)
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The sign of the Lagrange multipliers is arbitrary, and it may be conjectured that Lagrange selected the
minus sign for convenience. He was certainly aware of Equation 8 but apparently did not consider the right
side important since the computer had not been invented in his time. The equations that must be solved to
obtain an optimum are thus

ZC = C (M equations) (11)

∂J

∂U
+ λ

∂ZC

∂U
= 0 (N equations) (12)

The method of Lagrange multipliers requires the solution of M+N equations for N U parameters and
M Lagrange multipliers. This method is well-suited for obtaining analytic solutions since the equations of
constraint need not be solved for the independent U parameters as a function of the Z parameters. However,
the need to solve for the Lagrange multipliers makes numerical solutions7 more complicated than necessary.

Method of Explicit Functions

The methods of explicit functions and gradient projection use the right side of Equation 8 to obtain a
solution and thus avoid the need to solve for Lagrange multipliers. The method of explicit functions requires
an equation for the partial derivative of J with respect to ZF . Application of the chain rule gives

∂J

∂Z
=

∂J

∂U

∂U

∂Z
(13)

The partial derivatives of U with respect to the dependent target parameters Z are obtained by matrix
inversion:

[

∂J

∂ZC

∂J

∂ZF

]

=

[

∂J

∂U

]





∂ZC

∂U

∂ZF

∂U





−1

(14)

where

∂U

∂Z
=

[

∂Z

∂U

]

−1

=





∂ZC

∂U

∂ZF

∂U





−1

The equations that must be solved to obtain an optimum are the equations of constraint and the equations
defined by the last N − M columns of Equation 14:

ZC = C (M equations) (15)

∂J

∂ZF

= 0 (N − M equations) (16)

The method of explicit functions requires the solution of N equations for N control parameters U. This
algorithm is well suited for obtaining numerical solutions on a computer but not for analytic solutions since
it involves inversion of a matrix with analytic functions for elements. Observe that the Lagrange multipliers
are obtained as a byproduct of Equation 14 (the first M columns).

Method of Gradient Projection

The method of gradient projection5,8 is a special case of the method of explicit functions. The indepen-
dent parameters are partitioned into what are referred to as state parameters (UC) and decision parameters
(UF ). The choice between which independent parameters to designate as decision parameters is not unique.
The distinction between state and decision parameters is generally only a matter of convenience. However,
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according to Reference 8, the decision parameters must determine the state parameters through the con-
straint relations. Expanding Equation 14, separating the UC -dependent elements from the UF -dependent
elements, yields

[

∂J

∂ZC

∂J

∂ZF

]

=
[

∂J
∂UC

∂J
∂UF

]







∂ZC

∂UC

∂ZC

∂UF

∂ZF

∂UC

∂ZF

∂UF







−1

(17)

The ZF constraint relationships have yet to be specified. Depending on the choice of which U are included
in UF , some reordering of the rows and columns of Equation 14 may be necessary. Also, UF will be of
dimension N − M . Since the selection of the ZF equations of constraint is arbitrary, ZF may be made
identically equal to UF . Equation 17 then reduces to

[

∂J

∂ZC

∂J

∂ZF

]

=
[

∂J
∂UC

∂J
∂UF

]





∂ZC

∂UC

∂ZC

∂UF

0 I





−1

(18)

Performing the indicated matrix inversion yields

[

∂J

∂ZC

∂J

∂ZF

]

=
[

∂J
∂UC

∂J
∂UF

]





∂ZC

∂UC

−1

− ∂ZC

∂UC

−1 ∂ZC

∂UF

0 I



 (19)

and

∂J

∂ZF

=
∂J

∂UF

− ∂J

∂UC

∂ZC

∂UC

−1 ∂ZC

∂UF

= 0 (20)

Equation 20 is solved in conjunction with the equation of constraint to obtain an optimum as is done for the
method of explicit functions (Equations 15 and 16). Observe that the Lagrange multipliers are obtained as
a byproduct from both the method of explicit functions and gradient projection:

λ = − ∂J

∂ZC

= − ∂J

∂UC

∂ZC

∂UC

−1

(21)

Even though the Lagrange multipliers do no enter into the optimal solution, they are useful for determining
which bound is appropriate for inequality constraints.

Sample Problem

A sample problem is solved to illustrate the various methods of constrained parameter optimization.
Consider an ellipse with semi-major axis a and semi-minor axis b oriented along the Cartesian U1 and U2

coordinate axes. The problem is to find the greatest rectangle with sides parallel to the coordinate axes that
will fit inside the ellipse. The geometry is illustrated in Figure 1. The equation of constraint describes an
ellipse, and the performance criterion is the area of the rectangle. The area in the first quadrant is multiplied
by four and assigned a minus sign since we are seeking a maximum:

Zc =
U2

1

a2
+

U2
2

b2
= C = 1 (22)

J = −4U1U2 (23)
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Figure 1 Sample Problem

Solution by Method of Lagrange Multipliers

The method of Lagrange multipliers requires a solution of Equation 12 in conjunction with the equation
of constraint (Equation 22). For the sample problem,

∂J

∂U
= [−4U2 −4U1 ] (24)

∂ZC

∂U
=

[

2U1

a2
2U2

b2

]

(25)

Substituting into Equation 12 gives the following two equations:

−4U2 + λ
2U1

a2
= 0 (26)

−4U1 + λ
2U2

b2
= 0 (27)

which may be solved in conjunction with the equation of constraint (Equation 22) to obtain the solution,

U1 = a√
2
, U2 = b√

2
and λ = 2ab.

Solution by Method of Explicit Functions

The method of explicit functions requires a solution of Equation 14 in conjunction with the equation of
constraint (Equation 22). Since there are two independent parameters, an additional equation of constraint
is needed to square up the system of equations. For numerical solutions, a good choice is a function that is
normal to the constraint function. A hyperbola is selected for ZF :

ZF =
U2

1

c2
− U2

2

d2
(28)

For the sample problem, the terms of Equation 14 are given by
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∂ZC

∂U

∂ZF

∂U



 =







2U1

a2

2U2

b2

2U1

c2
−2U2

d2






(29)

The required matrix inverse is





∂ZC

∂U

∂ZF

∂U





−1

=
−1

4U1U2

(

a2b2c2d2

a2d2 + b2c2

)







2U2

d2

2U2

b2

2U1

c2

−2U1

a2






(30)

Substituting Equations 24 and 30 into Equation 14 yields

[

∂J

∂ZC

∂J

∂ZF

]

=
−1

4U1U2

(

a2b2c2d2

a2d2 + b2c2

)[

8d2U2
1 + 8c2U2

2

c2d2

−8b2U2
1 + 8a2U2

2

a2b2

]

(31)

The equation

8U2
2

b2
− 8U2

1

a2
= 0 (32)

is solved in conjunction with Equation 22 to obtain U1 = a√
2

and U2 = b√
2
. The Lagrange multiplier,

obtained from the first column of Equation 31, is simply λ = 2ab. Observe that at the solution point, the
constants c and d completely cancel from the solution as expected verifying that Equation 28 is arbitrary.

Solution by Method of Gradient Projection

The method of gradient projection requires a solution of Equation 20 in conjunction with Equation 22.
For the sample problem, U1 is selected for UC and U2 for UF . Because of symmetry, the selection of which
independent parameter is a “state” parameter and which is a “decision” parameter is completely arbitrary.

∂J

∂UC

= −4U2 (33)

∂J

∂UF

= −4U1 (34)

∂ZC

∂UC

=
2U1

a2
(35)

∂ZC

∂UF

=
2U2

b2
(36)

Substituting the above equations into Equation 20 yields

[−4U1] − [−4U2]

[

a2

2U1

] [

2U2

b2

]

= 0

−4U2
1 b2 + 4U2

2a2 = 0 (37)

which is solved in conjunction with Equation 22 to obtain U1 = a√
2

and U2 = b√
2
. The Lagrange multiplier,

which is also obtained as a byproduct, is given by substituting into Equation 21:

λ = −[−4U2]

[

2U1

a2

]

−1

= 2ab (38)
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Second-Order Gradient Search

Parameter optimization problems with constraints where the dependent parameters are obtained by
numerical integration are difficult if not impossible to solve analytically. Numerical solutions may be obtained
by searching using an iterative technique like Newton’s method. For the explicit functions method, the
equations that need to be solved are

ZC = C (M equations) (39)

and from the last N − M columns of

[

∂J

∂ZC

∂J

∂ZF

]

=

[

∂J

∂U

]





∂ZC

∂U

∂ZF

∂U





−1

(40)

the following equation is extracted:

∂J

∂ZF

= 0 (N − M equations) (41)

From the definition of the derivative, the following difference equations may be written:

∆ZC =
∂ZC

∂U
∆U (42)

∆
∂J

∂ZF

=
∂2J

∂U∂ZF

∆U (43)

The search for a solution involves finding a change in the independent control parameters that will move the
current values of the constraint parameters and optimization condition to their desired values. The desired
changes in the constraint parameters and optimization condition are given by

∆Zk
C = C− Zk

C (44)

∆
∂Jk

∂ZF

= 0 − ∂Jk

∂ZF

(45)

corresponding to a change in the control parameters from Uk to Uk+1,

∆U = Uk+1 − Uk (46)

Solving for Uk+1, an iterative equation is obtained for the k’th iteration:

Uk+1 = Uk −







∂Zk
C

∂U

∂2Jk

∂U∂ZF







−1




Zk
C − C

∂Jk

∂ZF



 (47)

The partial derivatives required by the optimization algorithm defined by Equation 47 are obtained by
finite difference. Computation of these finite difference partial derivatives requires repeated evaluation of
the functions f and g for the performance index and constraint parameters at each iteration:

∂J

∂Ui

=
f(U + ∆Ui) − f(U− ∆Ui)

2∆Ui

(48)
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The ∆Ui vector is zero except for the i th element that contains the partial derivative step size. ∆Ui is the
i’th element of ∆Ui. The partial derivatives of the constraint parameters with respect to the independent
control parameters are given by

∂Zj

∂Ui

=
gj(U + ∆Ui) − gj(U − ∆Ui)

2∆Ui

(49)

The elements of the required matrix of second partial derivatives are given by

∂2J

∂Uj∂Zi

=
1

2∆Uj

{ [f (U + ∆Uj + ∆Ui) − f(U + ∆Uj − ∆Ui)]

[g (U + ∆Uj + ∆Ui) − g (U + ∆Uj − ∆Ui)]
−1

−[ f(U− ∆Uj + ∆Ui) − f(U − ∆Uj − ∆Ui)]

[g (U − ∆Uj + ∆Ui) − g (U − ∆Uj − ∆Ui)]
−1} (50)

The partial step size for the first partial derivatives should be as small as possible to achieve linearity
but large enough, relative to the machine precision, to maintain accuracy. The partial step size for the
second partial derivatives (∆Uj) should be about 5 to 10 times larger than the corresponding (∆Ui). The
computation of the second partial derivatives (Equation 50) will require 4N2 evaluations of the performance
index and constraint functions. For six control parameters, 144 function evaluations are needed. Several
methods have been explored to accelerate the computation of the second partial derivatives. Since the
optimization conditions are not a function of the second partial derivatives, approximations may be used to
speed up the search without compromising accuracy. An approximation that worked well for optimization
of the Viking orbit insertion maneuver was to set all the terms of Equation 50 where i 6= j to zero. For this
approximation, 2N + 1 function evaluations are required. Another approach, along the lines suggested by
Fletcher-Powell-Davidon, was pursued in Reference 5. The matrix of second partial derivatives are initialized
with an approximate solution. Subsequent changes in the control computed during the search are used to
estimate and thus improve the second partial derivative matrix. This bootstrap approach can greatly speed
up the search but may lead to instabilities if the search is not properly controlled.

Inequality Constraints

Sometimes the constraint on a Z parameter is not a specific target value but a range of values. In other
situations, the second-order gradient search described above may not converge to the desired minimum if
the initial guess required to start the search is too far from the solution but instead wander off toward a
local maximum or inflection point. For these reasons, it is often convenient to specify inequality constraints
where the Z are constrained to a specified range of values:

CLi ≤ Zi ≤ CU i (51)

An algorithm has been devised to transform the problem of optimization with inequality constraints into the
problem of optimization with equality constraints described above. At any step in the iteration for a solution,
the Zi parameters are tested and sorted into the ZC category or ZF category. The algorithm is diagramed
on Figure 2. The following conditions result in the Zi target variable being placed in the constrained ZC

category:

(a) If CLi = CU i, Ci is set equal to CLi and Zi is a hard constraint

(b) If Zi > CU i, Ci is set equal to CU i and Zi is a soft constraint

(c) If Zi < CLi, Ci is set equal to CLi and Zi is a soft constraint

The following conditions result in the Zi target variable being placed in the unconstrained ZF category.

(d) If CLi < Zi < CU i

(e) If |Zi − CLi| < εb and ∂J
∂Zi

< 0

(f) If |Zi − CU i| < εb and ∂J
∂Zi

> 0
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Any of the following conditions result in convergence for a particular Zi constraint variable. All of the
constraint variables must simultaneously satisfy one of these conditions for a solution to be obtained.

(g) If |Zi − CLi| < εb and CLi = CU i, hard constraint

(h) If |Zi − CLi| < εb and ∂J
∂Zi

> 0, soft constraint

(i) If |Zi − CU i| < εb and ∂J
∂Zi

< 0, soft constraint

(j) If CLi < Zi < CU i and ∂J
∂Zi

< εp, a true minimum satisfying the constraints

Figure 2 Inequality Constraint Status Determination

A soft constraint applies to the current iteration and may be released as the search progresses. A hard
constraint is an equality constraint and applies throughout the search. The tolerance εb is on the value
of the constrained variable, and the tolerance εp is on the partial derivative of J with respect to Zi. The
conditions for control of the search and confirmation of a solution are lettered a-j and shown on Figure 2.
There are three possible cases that apply to each constraint variable provided the optimization problem has
been properly defined and constrained. The constraint variable may either be an increasing monotone across
the constraint interval, achieve a minimum within the constraint interval or be a decreasing monotone across
the constraint interval. If a maximum is sought, the sign of J is changed and the algorithm searches for a
minimum. These three cases are illustrated on Figure 2. For the first case, conditions (a) or (c) will select
the lower bound and condition (f) will release the constraint from the upper bound. At the solution point
(g,h), the partial derivative of J with respect to Zi, the negative of the Lagrange multiplier, indicates that
releasing the constraint will result in an increase in J . The solution is thus held at the lower bound. For
the second case, conditions e or f will release the constraint from the lower and upper bounds, respectively,
and a minimum is obtained (d,j) between the bounds. The third case is simply the mirror image of the first
case.

MESSENGER Mission Example

The MESSENGER spacecraft was launched on August 3, 2004, on a mission to explore the planet
Mercury. The trajectory first re-encounters Earth a year after launch, to obtain a gravity assist, and then
proceeds on to several encounters with Venus and Mercury before being inserted into Mercury orbit in 2011.
The initial injection error at Earth launch resulted in a 20 m/s under burn. Two Trajectory Correction
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Maneuvers (TCMs) were scheduled to make up the energy deficit and place the spacecraft on the proper
trajectory. Two TCMs are necessary to achieve the target; the first corrects the energy and the second
corrects the orbit plane. Because of the near 360◦ transfer, the first maneuver, which is performed shortly
after launch, is unable to correct the orbit plane. The second maneuver, which is performed about three
months after launch is placed to correct orbit plane but is less efficient in correcting energy or flight time.
Since there are only two constraints that need to be satisfied, the position relative to Earth in the target
B-plane at the second encounter, and there are six maneuver components available to control the trajectory,
the remaining four degrees of freedom may be used to minimize propellant expenditure.

The initial Earth launch injection conditions (X0) on August 3, 2005, were propagated to the nominal
time of Earth return on August 2, 2005. Two TCMs were initially planned for August 18, 2004, and
November 19, 2004. The spacecraft state at Earth return is determined by numerical integration:

Xe = g1(t0, X0, t1, ∆V1, t2, ∆V2, te) (52)

The maneuver velocity components, ∆V1 and ∆V2, are applied as finite burns at the maneuver start times
t1 and t2. At the end time (te), the Cartesian state vector is transformed into hyperbolic orbit elementsHe

with the S vector along the approach asymptote, T vector normal to S and in the Earth equator of J2000,
and the R vector completing the right hand Cartesian coordinate system. The B vector is in the R-T plane
from the center of the Earth to the intersection of the approach asymptote. The Cartesian state vector (Xe)
maps one to one into the hyperbolic elements (He) given the central body gravity GMe.

He = g2(Xe, GMe)

He = [B·R, B·T, tp, V∞, α∞, δ∞] (53)

The hyperbolic elements B·R and B·T are the coordinates of the approach asymptote in the target B-
plane; tp is the time of closest approach; V∞ is the approach hyperbolic velocity magnitude; and α∞ and
δ∞ are the right ascension and declination of the approach asymptote. The optimization problem is to
find the velocity change components of the two TCMs that will acquire the target and minimize propellant
consumption, which is related to the sum of the magnitudes of the maneuver velocity change associated with
each maneuver.

The optimization problem described above must first be cast into the framework required by the opti-
mization method being used. For all the methods described in this paper, the following constraint variables,
constraint parameters, performance index and control variables are defined:

ZC = [B·R, B·T] (54)

CC = [−14, 463.00 km,−17, 793.00 km] (55)

J = |∆V1| + |∆V2| (56)

U = [∆V1x, ∆V1y, ∆V1z, ∆V2x, ∆V2y, ∆V2z] (57)

The B-plane parameters are restored to their nominal pre-launch target values, and all the other hyperbolic
parameters at the second Earth flyby including flight time are permitted to float. Experience has revealed
that the flight time and approach velocity errors are small enough to be corrected by subsequent maneuvers.
For the method of explicit functions, four additional equations of constraint (ZF ) must be defined. A natural
choice are the equations for the four hyperbolic parameters that are not constrained:

ZF = [tp, V∞, α∞, δ∞] (58)

A problem with this choice for ZF is the sensitivity of the first maneuver to parameters defined after the
second maneuver. For this reason, a preliminary search is conducted with ZF defined by tp and the three
velocity components of the second maneuver rotated to along track, cross track and out of plane components.
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The in-plane velocity components for the second maneuver were constrained to zero, and a solution was
obtained that is within 5 m/s of optimum before the search stalled because of non linearity and the approx-
imation used for computing second partial derivatives. The search was restarted with the ZF as originally
described by Equation 58, and the results after each subsequent iteration are given in Table 1.

Table 1

OPTIMIZATION BY EXPLICIT FUNCTIONS

The search algorithm attempts to drive the constraint variables to their desired values at the same
time the performance index is being driven to a minimum value. At iteration 2, for example, a substantial
reduction in J is achieved at the expense of driving the constraint variables away from their desired values.
At iteration 4, a slight increase in performance index is obtained as the constraint variables nearly achieve
their objective. From iteration 5 through 9, convergence is achieved as the optimization algorithm drives
the optimization conditions to smaller values. The solution achieves an optimum within 0.1 mm/s before
machine precision prohibits any further reduction. The velocity components of the two maneuvers in Earth
mean equator of J2000 are

∆V1 = [12.186085,−13.684292,−8.4862428] m/s

∆V2 = [3.6276212,−3.4959270, 1.7057893] m/s

The first maneuver was a bit large for the maneuver system that had not been tested in space. The first
maneuver was delayed until August 24, 2004, and only about 80% of the required velocity change was
executed at this time. A small makeup maneuver was executed on September 24, 2004. The maneuver
scheduled for November 19, 2004, was executed as planned.

The same problem may be solved by the method of gradient projection. This method requires an awk-
ward choice of which independent parameters are “state” parameters and which are “decision” parameters.
A choice of four UF parameters must be made from two sets of maneuver parameters, each of dimension
three. The following arbitrary partition of maneuver velocity components into the categories required by
gradient projection was used for the search:

UC = [∆V1x, ∆V1y] (59)

UF = [∆V1z, ∆V2x, ∆V2y, ∆V2z] (60)

The gradient projection search algorithm was implemented by replacing ZF by UF and using the same
explicit function algorithm as above. The search was started with the maneuver velocity components set to
zero and the results after each iteration are given in Table 2. The first iteration moved the target variables
from about 2 million km to within 20,000 km of the desired target. By the third iteration the target variables
were within 200 km of their desired value and the performance index was within 1 m/s of optimum. Iterations
4-9 were within the linear region of the second partial derivatives, and quadratic convergence is observed.
The indication of quadratic convergence is an order of magnitude reduction in the optimization condition
after each iteration until the machine precision limit is reached.
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Table 2

OPTIMIZATION BY GRADIENT PROJECTION

CONCLUSION

This paper has presented a description of a constrained parameter optimization technique based on
explicit functions. The optimization theory is developed and compared with other techniques currently in
use. Since all of these techniques have the same mathematical foundation, they perform the same when
the search for an optimum is near the solution. When far from the solution, the response to nonlinearity
determines the performance. Since the method of explicit functions is more robust and provides for greater
control of nonlinearity, an improvement in performance may be expected. As an example, the first two
trajectory correction maneuvers of the MESSENGER mission to Mercury are optimized and the performance
shown.
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