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The period of free libration of Mercury’s longitude about the position it would have had if it were rotating
uniformly at 1.5 times its orbital mean motion is close to resonance with Jupiter’s orbital period. The
Jupiter perturbations of Mercury’s orbit thereby lead to amplitudes of libration at the 11.86 year period
that may exceed the amplitude of the 88 day forced libration determined by radar. Mercury’s libration in
longitude may be thus dominated by only two periods of 88 days and 11.86 years, where other periods
from the planetary perturbations of the orbit have much smaller amplitudes.

 2008 Elsevier Inc. All rights reserved.

1. Introduction

Observations of radar speckle patterns tied to the rotation of
Mercury have determined that Mercury occupies Cassini state 1
with an obliquity of 2.11± 0.1 arcmin, and that its forced libration
in longitude at a period of 88 days has an amplitude of 35.8 ± 2
arcsec (Margot et al., 2007). The large amplitude of the longitude
libration coupled with the Mariner 10 determination of the gravi-
tational harmonic coefficient C22 implies that Mercury has at least
a partially molten core. The full dynamical, three parameter fit
to the radar data shows an additional variation with a period of
about 12 years that could be interpreted as either a free libra-
tion in longitude or, as we shall see, a resonant forced libration.
The detection of this long period libration is only tentative, as the
time span of the radar data is only about a third of the free li-
bration period. More data are therefore required to confirm the
long period variation. Whether or not the long period variation in
Mercury’s rotation is real, the rapid damping (time scale ∼2× 105

years; Peale, 2005) and the lack of plausible excitation mechanisms
make a free libration difficult to understand. An understanding of
the long period libration will aid in the interpretation of the MES-
SENGER spacecraft determination of the orientation of the axis of
minimum moment of inertia (Solomon et al., 2001). MESSENGER
will determine the phase of the libration, whereas radar deter-
mines the librational angular velocity.

The perturbations of Mercury’s orbital parameters by the plan-
ets include terms whose period is that of Jupiter’s orbital motion.
The orbital variations are transmitted to forced librations at the
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periods of the perturbations. Relatively large amplitude long pe-
riod librations would ensue if the free libration period is close to
Jupiter’s orbital period. The value of (B − A)/Cm = (2.03 ± 0.12) ×
10−4 derived from the amplitude of the 88 day libration (Margot
et al., 2007) leads to a free libration period of a little over 12 years,
and the 1σ uncertainties in (B − A)/Cm lead to a range of free li-
bration periods that includes Jupiter’s orbital period of 11.86 years.
Here A < B < C are the principal moments of inertia of Mercury,
and Cm is the moment of inertia of the mantle and crust alone.
The resonant forcing of Mercury’s libration at Jupiter’s period was
noted by Margot et al. (2007) and discussed by Peale and Mar-
got (2007). If a dominant, nearly 12 year period of variation in
Mercury’s libration in longitude can be identified as a resonantly
forced libration from Jupiter’s perturbation of the orbit, we need
not seek an obscure excitation mechanism to account for an in-
terpretation as a free libration. The libration would then not be
misinterpreted in terms of Mercury’s inferred dynamical history or
its interior properties. Still, we have been surprised in the past,
and the possibility of a free libration must be retained.

Here we include the effects of the planetary perturbations of
Mercury’s orbital parameters on this planet’s libration in longitude,
and in the process, correct an error of omission in a previous work
by Peale et al. (2007). The large value of (B − A)/Cm = 3.5 × 10−4

used in this earlier work excluded any resonant interaction of the
free libration period and Jupiter’s orbital period. For the radar de-
termined value of (B − A)/Cm = 2.03 × 10−4, Mercury’s libration
is shown to be dominated by only two periods, the 88 day forced
libration that determines this parameter, and a long period libra-
tion forced at Jupiter’s orbital period, where the free libration is
damped to negligible amplitude. The remaining planetary pertur-
bations of the libration can be identified with perturbations by
particular planets, but they have much lower amplitudes. The am-
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plitude of the 11.86 year Jupiter induced libration would also be
small were it not for the near resonant forcing. Although the am-
plitude of the variation in the librational angular velocity with
11.86 year period for this most probable value of (B − A)/Cm is
less than that of the free libration inferred in Fig. 3B of Margot et
al. (2007), the latter amplitude is matched by the Jupiter forced li-
bration for a slightly larger value of (B − A)/Cm that is within the
1σ uncertainty.

The librational equations of motion are derived in Section 2 as
coupled equations governing the core and mantle, and they are
solved numerically in Section 3. The variations in the orbital pa-
rameters within these equations are determined from the 20,000
year JPL Ephemeris DE 408. Dissipation from tides and from the
interaction of a liquid core and solid mantle is included to damp
any free libration that could not be eliminated by the choice of
initial conditions. The history of the libration in longitude over the
20,000 year interval covered by the ephemeris is interpreted in
terms of the damping, the planetary perturbations and the secu-
lar change in Mercury’s orbital parameters over the interval. The
dominance of the 88 day and 11.86 year periods is demonstrated
by a 30 year segment of the libration including the current date.
The complete librational history is Fourier transformed to yield the
power spectral density (PSD) of the various frequencies. The ampli-
tudes of the dominant terms relative to that of the 88 day libration
are determined and compared with those obtained by Dufey et al.
(2008).

Details of the effect of the proximity of the free libration pe-
riod to Jupiter’s orbital period are given in Section 4. The equation
for the free libration is derived as an average of the equations
of motion over an orbit period. An approximate mantle equation
is that of a damped harmonic oscillator to which we add a pe-
riodic forcing term representing the dominant term at Jupiter’s
orbital frequency. The amplitudes of the forced librations as de-
termined by the approximate solution as a function of (B − A)/Cm
are compared with those obtained empirically as the dynamical
evolution passes the current epoch. The frequency of the free libra-
tions increases with (B − A)/Cm and thereby varies the nearness
to resonance and the amplitude of the 11.86 year term in the libra-
tion. The relative empirical amplitudes match those of the analytic
approximation very well as long as the system does not cross the
resonance during the 20,000 year interval. The phases of the forced
librations match those of the analytic approximation on both sides
of the resonance. Two values of (B − A)/Cm on opposite sides of
the resonance produce the amplitude of the long period term in-
ferred from the dynamical fit to the radar data. The libration for
several values of (B − A)/Cm are shown explicitly and additional
consistencies of the calculated libration with the analytical ap-
proximation are pointed out. In Section 5, we compare the results
directly with the radar data, where it is shown that the amplitude
of the long period variation of the libration in a dynamical fit to
the data can be easily accommodated within the 1σ uncertainties
in (B − A)/Cm . We summarize our results in Section 6.

2. Rotational equations

The potential of the Sun in Mercury’s gravitational field up to
the second degree terms is given by (e.g., Murray and Dermott,
1999)

V = −GM%MM

r

[
1− J2

R2

r2

(
3
2
cos2 θ − 1

2

)

+ 3C22
R2

r2
sin2 θ cos2φ

]
, (1)

where the position of the Sun is given by the ordinary spheri-
cal polar coordinates r, θ , φ relative to a principal axis system

Fig. 1. Angles used for analysis of libration in longitude. S X is directed from the Sun
toward the vernal equinox. M denotes Mercury with x being the axis of minimum
moment of inertia. Mercury’s orbit and equator planes are assumed coincident with
the ecliptic.

fixed in Mercury, with the z axis coinciding with the spin axis
and the x axis along the axis of minimum moment of inertia. G
is the gravitational constant, M% and MM are the masses of the
Sun and Mercury, respectively, R is the radius of Mercury, and
J2 = (C− A/2−B/2)/(MMR2) and C22 = (B− A)/(4MMR2) are the
second degree gravitational harmonic coefficients with A < B < C
being the principal moments of inertia. Fig. 1 shows the geometry
looking down on the plane of Mercury’s orbit, where φ is defined
explicitly and where S is the position of the Sun, the S X line is
fixed along the vernal equinox of J2000, ψm defines the orientation
of the axis of minimum moment of inertia relative to the inertial
S X line, f is the true anomaly, and % = ω + Ω is the longitude
of perihelion, with ω being the argument of perihelion and Ω the
longitude of the ascending node of the orbit plane on the ecliptic.
The angle ξ measures the orientation of the axis x of minimum
moment of inertia relative to the solar direction. Since we are ne-
glecting the variations in I , we choose the ecliptic and Mercury’s
equator and orbit planes to be coincident. This latter assumption
will not affect the forcing of libration, since the relevant torques
are perpendicular to the orbit plane whether or not that plane has
its real inclination.

With θ ≡ π/2 from our neglect of the small obliquity and the
variations in the orbital inclination I , we can write the torque on
the permanent distribution of mass in Mercury as the negative of
the torque on the Sun in Mercury’s field with T = ∂V /∂φ. Then

T = 3
2
GM%
r3

(B − A) sin2φ = −3
2
GM%
r3

(B − A) sin2ξ

= −3
2
GM%
r3

(B − A) sin2(ψm − % − f ). (2)

Since Mercury has a molten core (Margot et al., 2007), only Mer-
cury’s mantle and crust will respond to the external torque on the
short time scales of the forced and free librations in longitude. We
assume the coupling of the core to the mantle is proportional to
the difference in the angular velocities of each considered as rigid
bodies, which is consistent with their being coupled by a viscous
fluid. In addition, solid body tides raised on Mercury lead to a
torque because of the dissipation of tidal energy. Mercury’s rota-
tional equations of motion become

Cm
d2ψm

dt2
= −3

2
GM%
r3

(B − A) sin2(ψm − % − f )

− 3
k2
Q 0

GM2
%R5
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− ḟ

n

)
− k(ψ̇m − ψ̇c),

Cc
d2ψc

dt2
= k(ψ̇m − ψ̇c), (3)
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where Cm and Cc are the moments of inertia of the mantle and
core respectively, ψ̇m and ψ̇c the respective angular velocities, and
k is a constant coupling the core to the mantle. The model for the
tidal torque assumes that the equilibrium tidal bulge corresponds
to the position of the sub-solar point on Mercury a short time δt in
the past. This corresponds to a tidal torque where the dissipation
function Q is inversely proportional to frequency, such that δt =
1/Q 0n where n =

√
G(M% + MM)/a3 is the orbital mean motion

of Mercury and Q 0 is the value of Q appropriate to the orbital
frequency. [See Peale (2007) for a detailed derivation of the tidal
torque.]

The core kinematic viscosity ν is related to k by equating
the time constant for the decay of a differential angular veloc-
ity ψ̇m − ψ̇c obtained from Eqs. (3), with all torques except that
at the core–mantle boundary (CMB) set to zero, to the time scale
for a fluid with kinematic viscosity ν , rotating differentially in a
closed spherical container of radius Rc to become synchronously
rotating with the container at angular velocity ψ̇m . There results
CcCm/[(Cc + Cm)k] = Rc/(ψ̇mν)1/2 (Greenspan and Howard, 1963),
where Rc ≈ βR (β < 1) is the radius of Mercury’s core. This time
scale is appropriate for a completely molten core that participates
in the induced circulation.

In determining the effect of the planetary perturbations of the
orbit on Mercury’s libration in longitude, Peale et al. (2007) used
spline fits to JPL ephemeris DE 408 to account for the perturba-
tions of the semimajor axis a, the eccentricity e, the longitude of
the ascending node Ω and the argument of perihelion ω in the
numerical solution. However, we solved for the orbital motion in
cartesian coordinates, which process neglects the planetary pertur-
bations of the true anomaly f . This omission was pointed out to
us by Dufey et al. (2008). Here we correct this oversight by includ-
ing the planetary perturbations of the true anomaly f as given by
the ephemeris DE 408 but with the true anomaly converted to a
monotonically increasing function for the spline fit. The ephemeris
was sampled every 10 days in constructing the spline fits, where
the latter allowed determination of the orbital elements at random
times in the Burlisch–Stoer solution of the differential equations.

To make Eqs. (3) dimensionless we express the distances in AU

(a0 = 1 AU), scale time with the angular velocity n0 =
√
GM%/a30

of a test particle at 1 AU (t → n0t), which normalizes the angular
velocities by n0, and write C = αMMR2. The equations become

d2ψm

dt2
= −3

2
B − A
r3Cm

sin2(ψm − % − f )

− KT

r6

(
ψ̇m

n
− a2

√
1− e2

r2

)
− k′(ψ̇m − ψ̇c),

d2ψc

dt2
= k′ Cm

Cc
(ψ̇m − ψ̇c), (4)

where in dimensioned variables, KT = (3k2M%R3C)/(αQ 0MMa30Cm)

and k′ = k/Cmn0 = (1 − Cm/C)(a0/βR)(ψ̇m/n0)1/2(ν/a20n0)
1/2 with

Rc = βR , and where we have used ḟ =
√
G(M% + MM)a(1 − e2)/r2.

We shall choose α = 0.34 (Harder and Schubert, 2001) and β =
0.75 (Siegfried and Solomon, 1974) hereinafter. In Eqs. (4), dis-
tances are in AU, angular velocities are normalized by n0, and t
increases by 2π in one terrestrial year.

We substitute r = a(1 − e2)/(1 + e cos f ) in Eqs. (4) to solve
them numerically, where the time variation in the orbital elements
a, e, f , ω, Ω from the planetary perturbations are determined
from the 20,000 year JPL ephemeris DE 408 centered on calendar
year 1 and sampled at 10 day intervals. The initial conditions for
the angle ψm are chosen such that the axis of minimum moment
of inertia of Mercury is oriented toward the Sun when Mercury
passes its first perihelion in the ephemeris, and the initial ψ̇m = ψ̇c

is chosen so as to minimize as much as possible the initial am-
plitude of free libration discussed below. The initial amplitude of
the free libration is selected by the magnitude of the deviation
from ψ̇0

m ≡ (1.5 + ε)n, where εn accommodates the angular veloc-
ity due to forced librations. Equations (4) include the dissipative
torques with parameters chosen to yield a damping time scale of
the free libration of about 3700 years. This artificially high damp-
ing rate was chosen so that by the end of the 20,000 year time
span of the ephemeris or even by calendar year 2000, the free li-
bration amplitude that we could not completely eliminate by our
choice of initial conditions is damped to negligible amplitude. The
amplitudes of the planetary induced terms in the libration are es-
sentially unaffected by the damping (Peale et al., 2007). We first
determine the librational motion for the most probable value of
(B − A)/Cm = 2.03 × 10−4 (Margot et al., 2007), and from the
power spectral density of this libration, compare the amplitudes
of the dominant terms to those of Dufey et al. (2008). The inter-
esting consequences of varying (B − A)/Cm within its uncertainties
will then be determined.

3. Results

Fig. 2 displays the deviation of the axis of minimum moment
of inertia of Mercury (x axis) from the position it would have had
if the rotation were uniform at 1.5n over the 20,000 year inter-
val covered by JPL Ephemeris DE 408. Damping was imposed with
k2/Q 0 = 0.04 and ν = 30 cm2/s leading to a damping time scale
of about 3700 years. The large amplitude, long period modulation
with a period near 600 years at the beginning of the plot is due to
a beat frequency between a forced libration at Jupiter’s orbit period
and the free libration, where we were not able to quite eliminate
the latter in choosing the initial conditions. (The free libration will
be explained in more detail in the next section.) The free libration
is damped by the imposed dissipation and its contribution to the
overall libration is nearly gone by year 1. The growth in the ap-
parent amplitude beyond year 1 is real and is due to the fact that
the orbital eccentricity is growing during the 20,000 years. Small
amplitude modulations due to beat periods involving the periods
of the planetary perturbations of the orbit are evident in the lat-

Fig. 2. Mercury’s libration in longitude under the influence of the planetary pertur-
bations of the orbit according to the 20,000 year JPL Ephemeris DE 408. Damping
is applied to reduce the amplitude of the initial free libration.
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Table 1
Relative power and amplitudes of the dominant peaks in the PSD shown in Fig. 4
compared with the amplitudes obtained by Dufey et al. (2008). The periods and
magnitudes of the terms are determined from parabolic fits to the peaks at each
frequency in the PSD. The radar determined amplitude of the 88 day forced libration
is 35.8 ± 2 arcsec from which the actual amplitudes of each of the terms can be
determined. The symbols in the first column correspond to the labels in Fig. 4.

Period Forcing argument Power Amplitude Dufey et al.

1 43.98466 d 2(λ − % ) 0.01045 0.10223 0.11150
0 87.96935 d λ − % 1.00000 1.00000 1.00000
V 5.66316 y 2λ − 5λV + 3% 9.40318× 10−3 0.09697 0.10691
J 5.93124 y 2λ J − 2% 1.64592×10−3 0.04057 0.04111
E 6.57457 y λ − 4λE + 3% 2.2111 × 10−4 0.01487 0.01760
J 11.86295 y λ J − % 1.19550 1.09339 0.32611
S 14.73017 y 2λS − 2% 2.02590×10−3 0.04501 0.03030

Fig. 3. Upper panel: Mercury’s libration in longitude for a 30 year time interval that
includes the current date. The 88 day forced libration is superposed on a long pe-
riod oscillation that masquerades as a free libration. Lower panel: The deviation of
Mercury’s angular velocity from the resonant value of 1.5n showing a small ampli-
tude long period variation corresponding to the long period oscillation in the upper
panel. The ordinates γm = ψm − % − 1.5〈n〉(t − t0) and γ̇m = ψ̇m − 1.5n, where t0
is the time of perihelion passage.

ter half of the plot. The dominant modulation beyond year 2000
reflects the 882 year beat period characteristic of the 5:2 great in-
equality of Saturn’s and Jupiter’s mutual interactions, whereas the
fine scale variations result from a beat period of 124 years between
the 5.66 year Venus term and the 5.93 Jupiter term in Table 1.

Fig. 3 shows a short segment of the librations in Fig. 2 along
with the deviation of the angular velocity from the resonant 1.5n.
The high frequency oscillations are the 88 day forced libration due
to the reversing gravitational torques from the Sun, and these are
superposed on a long period variation with a period of about 12
years. This long period libration is reflected in a small long period
modulation of the librational angular velocity. These latter oscilla-
tions are smaller than the tentative free libration that is consistent
with a full dynamic fit to the radar data (Margot et al., 2007). How-
ever, the long period variation in Fig. 3 is not a free libration as can
be seen in Fig. 4, which shows the Fourier transform (power spec-
tral density (PSD)) of the complete libration variation shown in
Fig. 2. The 88 day forced libration and its first three harmonics are
numbered 0 to 3, and the other dominant frequencies are marked
with V, E, J, S as being due to perturbations of the orbit by Venus,
Earth, Jupiter and Saturn, respectively. The free libration frequency

Fig. 4. Power spectral density of the libration shown in Fig. 2. The dominant forced
libration period of 87.96935 days and its first three harmonics are numbered 0 to 3.
The prominent frequencies are marked with V, E, J and S as being due to perturba-
tions of the orbit by Venus, Earth, Jupiter and Saturn, respectively. The power from
the free libration is denoted by f . The relative magnitudes of the planetary terms
are considerably different from those obtained by Peale et al. (2007), who had ne-
glected the planetary perturbations of f .

is denoted by f . The Jupiter contribution to the PSD at a period of
11.86 years is about the same as that of the 88 day forced libra-
tion, which is consistent with the approximately 12 year oscillation
in the top panel of Fig. 3 being about the same amplitude as that
of the 88 day libration superposed on it.

To complete the discussion of the PSD in Fig. 4, we have con-
structed in Table 1 the ratios of the magnitudes of the power
densities of the dominant frequencies to that of the 88 day li-
bration designated by 0. The line centers and actual peaks are
determined by passing a parabola through the maximum and the
two adjacent points on either side for each frequency. The ratio
of the amplitudes of the terms in the libration spectrum is then
the square root of the power density ratios. This gives a reason-
ably accurate ratio of the amplitudes as the FWHM of the different
lines are comparable. Finally, the amplitudes are compared with
those of Dufey et al. (2008), where there is reasonably good agree-
ment except for the 11.86 year Jupiter term. The reason for this
difference is that Dufey et al. use a value of C22 = 1.0 × 10−5

and our values of C/MMR2 = 0.34 and Cm/C = 0.5 leading to
(B − A)/Cm = 2.35× 10−4 instead of 2.03× 10−4. Why this makes
a difference in the ratio of the amplitudes of 11.86 year and 88
day terms in Mercury’s libration, and why the Jupiter term is so
relatively large in the first place are explained in the next section.

4. Details of the free libration effects

Since Mercury’s angular velocity is on average 1.5n, we can
study the long period librations about the resonant value by writ-
ing ψ̇m = 1.5n + γ̇m , such that ψm = 1.5M + % + γm , where
M = n(t − t0) is the mean anomaly with t0 being the time of peri-
helion passage. The constant of integration is chosen such that γm
measures the angle between the axis of minimum moment and
the direction to the Sun when Mercury is at perihelion. The argu-
ment of the sine in Eq. (3) is then 2(γm + 1.5M − f ). The angle
γm is a slowly varying quantity, and so its motion can be studied
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by expanding terms like (ak/rk)(cos f , sin f ) in terms of the mean
anomaly M (e.g., Murray and Dermott, 1999) and averaging Eq. (3)
over an orbit period while holding γm constant. The tidal torque is
averaged directly without an expansion. There results for the rela-
tive motion of the mantle,

γ̈m + 3n2
B − A
Cm

G201(e)γm +
(

F
Cmn

+ k
Cm

)
γ̇m

= k
Cm

γ̇c − F D
Cm

+
[

E
Cm

coswt
]
, (5)

where the second term results from the resonant terms in ex-
pansions of (a3/r3)(cos f , sin f ) in the mean anomaly, all other
terms in the expansion averaging to zero, and where we have
used sin2γm ≈ 2γm . G201(e) = 7e/2 − 123e3/16 + 489e5/128 − · · ·
is an infinite series with the Kaula (1966) notation. The aver-
aged tidal torque is of the form 〈TT 〉 =− F (D + γ̇ /n) where
F = 3k2n4R5 f2(e)/Q 0G and D = 1.5 − f1(e)/ f2(e) with f1(e) =
(1 + 15e2/2 + 45e4/8 + 5e6/16)/(1 − e2)6, and f2(e) = (1 + 3e2 +
3e4/8)/(1 − e2)9/2 (e.g., Peale, 2007). The variables γm, γc, γ̇m, γ̇c
are now averages around the orbit. The last term in square brack-
ets on the right hand side is an added external forcing term at
the frequency of Jupiter’s orbit, which is appropriate because that
term in PSD is the dominant long period forcing of the libration in
longitude.

In general, |γ̇c | -| γ̇m|, since it is only weakly coupled to the
mantle, and its neglect means Eq. (5) is simply the equation of
a damped harmonic oscillator forced at frequency w with natural
radian frequency w0 = n

√
3(B − A)G201(e)/Cm and damping con-

stant b = F/Cmn + k/Cm , whose well known solution is

γm = exp
(−bt

2

)
D ′

1 cos
(
w ′

0t + φ1
)
+ E cos(wt + φ2)

Cm

√
(w2

0 − w2)2 + w2b2
, (6)

where w ′
0 =

√
w2

0 − b2/4, D ′
1 and φ1 are determined by ini-

tial conditions, and sinφ2 = −wb/
√

(w2
0 − w2)2 + w2b2; cosφ2 =

(w2
0 − w2)/

√
(w2

0 − w2)2 + w2b2. Without the forcing term or
the damping, the angle γm would librate about zero with fre-
quency w0, which means that if one could view Mercury only
at the times it passed perihelion, the axis of minimum moment
of inertia would slowly swing back and forth about the direc-
tion to the Sun at frequency w0. For the best fit radar value of
(B − A)/Cm = 2.03 × 10−4, 2π/w0 = 12.0655 years (Fig. 5). Since
the amplitude and phase of this libration are arbitrary, we call
this a free libration. For plausible values of k2/Q 0 = 0.004 and
ν = 0.01 cm2/s, the free libration is damped with a time scale
near 2× 105 years (Peale, 2005).

The relevance of Eq. (6) to the current libration state of Mer-
cury comes from the fact that Jupiter’s orbital period is close to
the period of free libration 2π/w0, and the amplitude of the li-
bration at this frequency can therefore be abnormally large. Fig. 5
shows the free libration period as a function of (B − A)/Cm for
the current value of the orbital eccentricity e = 0.20563. The free
libration period corresponding to the radar determined value of
(2.03± 0.12)× 10−4 is indicated at a little longer than 12 years on
the curve along with the ±1σ values of the period. Jupiter’s or-
bital period (11.86 years) is also indicated on the curve, and it falls
within the one sigma uncertainty in the free libration period. Now
we can understand why the frequency of the Jupiter orbital mo-
tion is so dominant in the PSD shown in Fig. 4. The most probable
value of (B − A)/Cm = 2.03 × 10−4 leads to w0 being relatively
close to w , such that the coefficient of cos(wt + φ2) in Eq. (6) is
relatively large. The increase in e from 0.20318 to 0.20699 dur-
ing the 20,000 year interval of the DE 408 ephemeris decreases
2π/w0 and brings the period closer to the Jupiter period in Fig. 5.

Fig. 5. Free libration period for Mercury as a function of B − A/Cm with the nominal
period and its 1σ extremes relative to Jupiter’s orbit period indicated by the dots.

The resulting growth in the coefficient of cos(wt + φ2) in Eq. (6)
explains why the amplitude of the libration grows after the free
libration is damped to negligible amplitude in Fig. 2.

Radar determines the librational angular velocity of Mercury,
so we plot the amplitude of the derivative of the last term in
Eq. (6) as a function of (B − A)/Cm in Fig. 6, where the coeffi-
cient E is determined such that amplitude of the forced libration
at the 11.86 year period matches that obtained numerically when
w0 - w . Empirical measures of the amplitude of the 11.86 year
term in the variation of the differential angular velocity were de-
termined by integrating Eq. (3) over the 20,000 year interval for
various values of (B − A)/Cm and determining the long period am-
plitude from year 2000 to 2030 as in the lower panel of Fig. 3.
These empirical amplitudes appear as dots in Fig. 6 and are seen
to match the analytic approximation of the amplitude very well
for the smaller values of (B − A)/Cm but a few points at or just on
the other side of the resonance differ substantially. This difference
is due to the fact that the system is carried across the resonance
by the growing eccentricity during the integration and the 30 year
interval beginning at year 2000 fell at varying stages of this tra-
verse for these values of (B − A)/Cm , where the system had not
completely relaxed to a steady state. The dissipation here reduces
the amplitudes from values appropriate to more realistic values
(much smaller) of the dissipation parameters. For example, for
(B − A)/Cm = 2.095 × 10−4 that reduction is about 11%, which is
determined by evaluating the coefficient of cos(wt + φ2) in Eq. (6)
with and without b = 0. The reduction in amplitude is less than
11% for smaller values of (B − A)/Cm . The reduction in amplitude
is also less than 11% for (B − A)/Cm > 2.105 × 10−4 on the other
side of the resonance that occurs at (B − A)/Cm = 2.100 × 10−4

(Fig. 5).
The change in w0 with (B− A)/Cm also explains why the Dufey

et al. value for the amplitude of the Jupiter 11.86 year term in Ta-
ble 1 is a factor of 0.298 less than the value we obtain. Their choice
of (B − A)/Cm = 2.35 × 10−4 leads to w0 = 1.775 × 10−8 s−1 that
is on the other side of the frequency w = 1.678 × 10−8 s−1 from
our value w0 = 1.650×10−8 s−1 (e = 0.20563). For the parameters
k2/Q 0 = 0.04 and ν = 30 cm2 s−1, b = 1.703 × 10−11. Substitution
of these frequencies into the expression for the amplitude of the
cos(wt + φ2) term in Eq. (5) gives a ratio of forced amplitudes of
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Fig. 6. Analytic estimate (solid line) of the amplitude of Mercury’s librational angular
velocity forced at Jupiter’s orbital period as a function of the proximity of the free
libration frequency w0 to Jupiter’s orbital frequency w as determined by the value
of (B − A)/Cm . Dots indicate values of the amplitudes obtained numerically with
the meaning of the special symbols indicated in the figure.

0.278, which is in reasonable agreement with the ratio from Ta-
ble 1. For both values of w0, wb - |w2

0 − w2| so the imposed
dissipation has little effect on either of these amplitudes of libra-
tion in longitude forced by the 11.86 year Jupiter term.

In the top panel of Fig. 3, the amplitude of the 88 day forced
libration is ∼36′′ , consistent with the radar value of (35.8 ± 2)′′ ,
and the deduced (B − A)/Cm = (2.03 ± 0.12) × 10−4 (Margot et
al., 2007) that we used for that figure. The amplitude of the long
period modulation in this same panel is ∼40′′ , which is close to
the 1.09339 × 35.8′′ = 39.14′′ inferred from Table 1.

In addition to the amplitudes of the forced oscillation match-
ing those of the analytic approximation, at least for w0 < w , the
phases of the long period oscillation are also consistent. Given that
the argument of the term in Mercury’s disturbing function due to
Jupiter is λ J − % , one expects the phase of the 11.86 year libra-
tion in longitude to be related to Jupiter’s passage by the Mercury
perihelion or aphelion longitude. Mercury’s libration in longitude
for 30 years spanning the present for several values of (B − A)/Cm
is shown in Fig. 7. The times when Jupiter passes Mercury’s per-
ihelion position of % = 77.465◦ relative to the vernal equinox
of J2000 are indicated by the vertical lines. The amplitudes dis-
play the expected behavior of increasing with increasing values of
(B− A)/Cm yielding values of w0 closer to w , and the phases show
the consistent qualitative behavior of the minimum of the long pe-
riod oscillations having a phase lag closer to −180◦ from the times
of Jupiter’s passage of Mercury’s perihelion longitude (λ J −% = 0)
for values of w0 further below w . In addition, there is a rever-
sal in phase for (B − A)/Cm = 2.130 × 10−4 as expected, because
the corresponding value of w0 is now larger than w . Fig. 8 shows
the phase shift of the libration from the forcing phase wt deter-
mined analytically (solid line) as a function of (B − A)/Cm for the
assumed values of k2/Q 0 = 0.04 and ν = 30 cm2/s. [For more re-
alistic values of these parameters, the transition from values near
−180◦ to values near 0◦ would be more abrupt (closer to a step
function transition).] From Fig. 7 we can determine an approximate
negative phase shift of the long period minimum of each curve
relative to the zero of the forcing argument (when Jupiter passes

Fig. 7. Phases and amplitudes of Mercury’s libration in longitude with dominant
long period oscillation with an 11.86 year period. The vertical lines indicate Jupiter’s
passage of Mercury’s perihelion longitude (λ J = % ). The amplitudes and phases are
consistent with the analytic approximation to the motion. (See Fig. 8.)

Fig. 8. The solid line is the phase shift φ2 of Mercury’s longitude libration forced
at Jupiter’s orbital period according to the approximate solution of Eq. (6). The dots
are the displacements in phase of the first minimum of the long period variations
in Fig. 7 from the time when λ J − % = 0.

Mercury’s perihelion longitude). With phase advancing 360◦ in the
11.86 year Jupiter period, these phase shifts in degrees are repre-
sented by dots in Fig. 8 for the values of (B − A)/Cm for which
the oscillations are plotted in Fig. 7 plus two additional extreme
values of (B − A)/Cm . The empirical phase shifts match those of
the analytic estimate within the uncertainty of their determina-
tion, which uncertainty includes shift in the precise position of
the minima in Fig. 7 from the other planetary perturbations. For
more realistic choices of the damping parameters, the phase of the
resonant forced libration will be such that either the long period
librational motion will be maximal when Jupiter passes Mercury’s
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perihelion (w0 < w) or minimal (w0 > w), with the amplitude be-
ing determined by the value of (B − A)/Cm . This contrasts with a
free libration which would have an arbitrary amplitude and phase.

5. Comparison with the radar data

In Fig. 3B of Margot et al. (2007), the slope of the mean value of
the differential angular velocity is consistent with a free libration
in longitude as we have defined it above. Since the free libration
damps on a time scale of about 105 years (Peale, 2005), a finite
amplitude free libration would be hard to understand, as there are
no obvious candidates for a recent excitation. But it is not con-
sistent with a forced libration at Jupiter’s orbital frequency whose
amplitude is enhanced by the proximity of the free libration period
to Jupiter’s orbital period. If we infer that the long period variation
in Fig. 3B of Margot et al. (2007) is a forced libration at Jupiter’s or-
bital period and that the extreme right of the curve is a minimum,
the drop in the mean value of the librational angular velocity of
0.6′′/d in 18 Mercury orbital periods implies a forced variation in
the mean librational angular velocity with amplitude 0.360′′/d and
a libration amplitude of 249′′ . These values are considerably larger
than the 0.06′′/d and 40′′ seen in the bottom and top panels of
Fig. 3, but they would be produced if (B − A)/Cm = 2.086 × 10−4

or 2.114 × 10−4, where both values are within the 1σ uncertainty.
The amplitudes of the librational angular velocity for these values
of (B − A)/Cm along with the nominal value are indicated in Fig. 6
with distinct symbols.

If we consider the librational angular velocities for the two val-
ues of (B− A)/Cm that yield long period amplitudes comparable to
that for the best 3 parameter fit to the radar data, we find in Fig. 9
that neither matches the phase of the radar librational angular ve-
locity. This mismatch is not surprising considering the short time
span of the radar data and the tentative nature of the long period
librations implied by the best 3 parameter fit. We expect to find a
significantly different long period component with more data. The
high sensitivity of the long period libration amplitude to the value
of (B − A)/Cm and the constraint on the phase provides a useful
consistency check to the best fit value determined by the ampli-
tude of the 88 day libration, and may ultimately be used to reduce
the uncertainty in (B − A)/Cm .

6. Summary

The main result of this paper is the fact that Mercury should
have a forced libration at Jupiter’s orbital period whose ampli-
tude may exceed that of the 88 day forced libration. This assertion
depends on the condition that the value of (B − A)/Cm remain
close to its currently most probable value as additional observa-
tional data is accumulated. The forced long period libration will be
distinguished from a free libration of comparable period by hav-
ing a definite phase and amplitude, whereas a free libration phase
and amplitude will be arbitrary. Tidal and core–mantle dissipation
should have reduced the free libration to negligible amplitude, but
we might be surprised.

We have solved the equations of rotational motion to determine
Mercury’s libration in longitude, while including the variations in
the orbital parameters, a, e, f , ω, Ω as given by the 20,000 year
JPL Ephemeris DE 408. Variations in the orbital inclination are ne-
glected, since these cannot affect the libration in longitude in a
significant way. Dissipation in the form of tides and a viscous cou-
pling between a solid mantle and liquid core are included to damp
the free libration to negligible amplitude after about 10,000 to
12,000 years except when the value of the free libration frequency
w0 crosses the resonance with Jupiter’s orbital frequency w during
the 20,000 years. The square root of the ratio of several dominant
peaks in the PSD due to Venus, Earth, Jupiter and Saturn to the

Fig. 9. Comparison of the three parameter, dynamical fit of the radar measurements
of the librational angular velocity treated as a free libration, with the forced libra-
tion at Jupiter’s orbital frequency, for values of (B − A)/Cm that yield the same
amplitude of the long period variation while remaining within the 1σ uncertainty
of the moment difference ratio. The two forced librations are of nearly opposite
phase because the two values of (B − A)/Cm yield values of free libration frequency
w0 on opposite sides of the resonance with the Jupiter orbital frequency w .

dominant peak at a period of 88 days yields the ratio of the am-
plitudes of these planetary caused terms to the amplitude of the
88 day libration. The measured value of the latter amplitude of
(35.8 ± 2)′′ (Margot et al., 2007) allows determination of the ac-
tual amplitudes of the selected librational terms. These amplitude
ratios are considerably different from those obtained by Peale et
al. (2007), because they had omitted the planetary perturbations
of the true anomaly f . The ratios are now consistent with those of
Dufey et al. (2008), which were obtained through a clever Hamil-
tonian analysis.

The behavior of Mercury’s libration is analogous with that of
a damped harmonic oscillator forced at a frequency w (Jupiter’s
orbital frequency) near its resonant frequency w0 (free libration
frequency). Amplitudes of the 11.86 year libration increase as w0
approaches w , and the phase of the libration reverses for w0
on opposite sides of the resonance. The phase lags of the long
period variation in libration follow the trend in the analytic ap-
proximation. The phase of the forced libration for either value of
(B − A)/Cm within the 1σ uncertainty that produces an ampli-
tude of 11.86 year libration like that inferred from a dynamic fit
to the radar data does not agree with the phase of the libration
in that fit. This emphasizes the tentative nature of the long period
libration signature as determined by radar and the need for more
observational data to secure the details of the long period libration.
The sensitivity of the long period libration amplitude to the prox-
imity of w0 to w , might be used to reduce the uncertainty in the
radar determination of (B − A)/Cm obtained from the amplitude of
the 88 day libration.
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