

REUSE OF THE JPL CFDP SOFTWARE
IN THE JHU/APL MESSENGER GROUND SYSTEM

William C. Stratton
Constantine M. Frangos

Joseph J. Harrison
Douglas B. Holland

Ground Applications Group
Information Systems Branch

Space Department
The Johns Hopkins University Applied Physics Laboratory

Laurel, MD 20723-6099
William.Stratton@jhuapl.edu

ABSTRACT
JHU/APL is using CCSDS CFDP in support of
MESSENGER, a NASA Discovery mission to study the
planet Mercury. JHU/APL added CFDP capabilities to
their common ground software assets by reusing core
CFDP software components provided by NASA JPL.
C++ classes were developed to encapsulate the JPL CFDP
software, and a reusable, mission independent user
program was implemented that conforms to JHU/APL’s
common GSE control and monitoring interface to the ISI
EPOCH 2000 system. In developing the MESSENGER
CFDP ground software, JHU/APL achieved an 87%
software reuse level.

1 Introduction
CCSDS (Consultative Committee for Space Data
Systems) has developed a standard protocol for
transferring files to and from a spacecraft mass memory
called CFDP (CCSDS File Delivery Protocol)i. Due to
the unique requirements of space communications
systems, CFDP is quite complicated; by definition, any
complete implementation will be large and complex.

JHU/APL (The Johns Hopkins University Applied
Physics Laboratory) is using CFDP in support of the
MESSENGER (MErcury Surface, Space ENvironment,
GEochemistry, and Ranging), a NASA Discovery mission
to study the planet Mercuryii. CFDP transmits files of
MESSENGER instrument and spacecraft housekeeping
and science data from space to ground. The
MESSENGER flight software has tight memory and
processing constraints, and only the file downlink features
of CFDP are needed, so a simple custom implementation

of the required subset of CFDP has been developed. The
MESSENGER ground software runs on powerful Sun
workstations, so reuse of a general-purpose CFDP
implementation is feasible on the ground.

Five such implementations were developed in the course
of defining and validating the protocoliii (see Table 1-1).
The development efforts were entirely independent,
performed by different centers of different national space
agencies for different platforms, but extensive testing has
determined that they are interoperable. As a result, flight
projects interested in using CFDP for mission operations
are in an unusually advantageous position; the variety of
available implementations increases the likelihood of
being able to enjoy the advantages of this new technology
in a given technical environment without the expense of
developing it from the ground up.

Table 1-1 Current CFDP Implementationsiv
Agency,
Center

Language Target
Processor(s)

Target
OS(s)

BNSC,
Qinetiq

C Force Sparc
3CE

VxWorks

ESA,
ESTEC

Object
Pascal,
Delphi

Intel x86 Windows

NASA,
GSFC

C Intel x86 Linux

NASA,
JPL

C Sun Sparc
PowerPC
Intel x86

Solaris
VxWorks
Linux

NASDA,
NEC

C++ Intel x86 Windows 2000

JHU/APL has a proprietary ground software architecture,
common to all supported NASA space missions,
including MESSENGER. The architecture follows the
“pipes and filters” patternv. A large body of software
assets has accumulated that works with JHU/APL’s
architecture, and this software is reused by each new
mission. The existing software assets are implemented in
Solaris/C++ and are compatible with the ISI (Integral
Systems, Inc.) EPOCH 2000 satellite ground systemvi.

The JPL (Jet Propulsion Laboratory) CFDP
implementation also follows the “pipes and filters”
pattern, and it can be built for Solarisvii. This makes it
compatible with JHU/APL’s common ground software
architecture at a high level; JHU/APL licensed the
software to implement the ground side of
MESSENGER’s CFDP requirements.

JPL CFDP is maturing rapidly. Currently it is being
integrated into the Deep Impact Flight Software. JPL
CFDP is also being integrated into JPL's AMMOS
(Advanced Multi-Mission Operations System) and the
Mission Data Systems Framework. MRO (Mars
Reconnaissance Orbiter) and MSL (Mars Smart Lander)
are considering using the JPL CFDP software in their
software systems.viii

To integrate JPL’s CFDP software into the existing
JHU/APL common ground system, some “glue” software
was developed. The MESSENGER CFDP transport layer
consists of CCSDS telemetry transfer frames and
command packets; hooks into the telemetry and
command processing were provided. The JHU/APL
software supports a generic GSE (Ground Support
Equipment) interface, so a UNIX process was created for
controlling and monitoring the CFDP software that
follows the GSE protocol, making JPL CFDP look like a
GSE to the rest of the JHU/APL system. C++ classes
were created to simplify the development of a JPL CFDP

“user program” for controlling and monitoring the CFDP
software. These classes completely encapsulate the JPL
software, isolating the JHU/APL software from JPL
implementation specifics.

Much less effort was required to implement the “glue”
than to develop a CFDP implementation from scratch;
JHU/APL achieved an 87% reuse level, saving an
estimated 6.8 developer-years of effort and allowing a
working system to be deployed in a timely fashion for
spacecraft I&T (Integration and Test). MESSENGER
I&T is currently being supported by the integrated system
described in this paper.

2 JHU/APL Ground Software Architecture
Figure 2-1 illustrates the JHU/APL ground software
architecture, common to all of JHU/APL’s NASA space
missions, including MESSENGER. The common ground
system is comprised of four functional areas: telemetry,
commanding, planning and assessment. The commanding
and telemetry functional areas work with the EPOCH
2000 system to provide control, monitoring and display
capabilities for the spacecraft and for the GSE. The
planning area provides offline commanding and
spacecraft management planning. The assessment area is
responsible for data archiving and production of data
products used by the operations personnel for spacecraft
assessment and by other data users.

Reuse of the command and telemetry systems requires
maintaining standard interfaces to the spacecraft. The
common ground system must also provide capabilities for
control and monitoring of GSE. The system converts data
from these external hardware systems into ground source
telemetry data, which are handled by the same interfaces
as the spacecraft telemetry. Likewise, the system uses
portions of the existing command system to provide a
standard method for GSE control.

Commanding

Assessment

Planning

Telemetry

Planning
Inputscommands

Supplemented
Telemetry
Packets

Deep Space
Network

Spacecraft
Engineering

Data
Users

Data
 P

rod
uc

ts

Science
Data Users

Data
Products

Mission Operations Center

EPOCH 2000 MOC
Users

Ground Support
Equipment

Telemetry Frames

Command Frames

GSE Directives

GSE Data
Packets

MESSENGER
Spacecraft

D
at

a
P

ro
du

ct
s

Figure 2-1 JHU/APL’s common ground software architecture is
used by all of JHU/APL’s NASA missions.

The architecture is designed to be
reused and extended as the mission
moves through development stages.
Initially the ground system supports
flight software and subsystem
development. The system is then used
to support spacecraft I&T. The I&T
configuration is the most complex,
supporting a variety of GSE and
spacecraft communication
configurations. The system undergoes
a reconfiguration to support flight
operations. Adaptation of the
command and telemetry interfaces is
required for data coming from the
Deep Space Network. This reuse
across mission phases allows this
system to develop and specialize as the
mission progresses and allows major
system architecture changes, such as
the addition of CFDP, to be
thoroughly tested before final
deployment.

3 JPL CFDP Software
Architecture

The core of the MESSENGER ground system CFDP
implementation is provided by JPL. This C-language
implementation, illustrated in Figure 3-1, is fully
compliant with version 1 of the CFDP blue-book. JPL
provides C libraries so that user applications can interface
with the software. JPL also provides a fully functional
UDP (User Datagram Protocol) implementation and a test
harness so that the implementation can be verified. The
test harness includes a UDP-based link simulator, which
allows PDUs (Protocol Data Units) to be dropped,
duplicated, delayed or reordered.

The MESSENGER ground system utilizes five of the JPL
CFDP processes. These processes, which form the core of
the JPL implementation, are fdpd, fdpi, fdpo, fdpq and
fdpsdrd. The fdpd process is primarily responsible for
implementing the CFDP protocol, including handling
transmission and retransmission of PDUs. The fdpi and
fdpo processes are responsible for receiving and sending
PDUs from the Unitdata Transfer (UT) layer,
respectively. The fdpq process notifies fdpd when an
acknowledgement has been sent, so that fdpd can initiate a
timer. The last process, fdpsdrd, manages the Simple
Data Recorder (SDR). The SDR is used for persistent
storage of data, providing the CFDP implementation with
a consistent, abstract means of interacting with non-
volatile memory on a variety of platforms.

The JPL implementation includes a number of processes
that allow PDUs to be transmitted and received over

UDP. A sample user program, fdpapp, allows the user to
send requests from a command line program, fdpreq, to
the CFDP daemon. The fdplink process is used to submit
link cue commands to the CFDP daemon. The udptofdp
process receives UDP datagrams, extracts PDUs from
them, and passes them to fdpi. The fdptoudp process
receives PDUs from fdpo, encapsulates them inside of
UDP datagrams, and transmits them. Only one PDU is
contained in each datagram. The udprelay and relay
processes are the UDP link simulator and its command
line interface, respectively.

The operation of CFDP is relatively straightforward.
Incoming PDUs are received by fdpi via the UT layer and
passed along to fdpd. Fdpd, in turn, will process the
incoming PDU in accordance with the CFDP protocol.
Whenever a PDU needs to be sent, fdpd will build the
PDU and pass the data to fdpo for transmission to the UT
layer. The user interacts with the JPL implementation
through direct interaction with the fdpd daemon.
Interactions, including requests for file transfers, link cues
or changes to the configuration of CFDP, can be passed
from the user application to fdpd. Whenever an
asynchronous event occurs, such as the completion of a
file transfer, fdpd will notify the user application through
what is called an indication. From these indications, the
user application can to perform any additional actions that
may be necessary as a result of the event.

The JPL UT interface library, libfdput, is very easy to use.
The three major functions this interface library performs
are to allow user processes to initialize the interface,

jpl_cfdp

Requests

Incoming PDUs

Notification
Tokens

fdpd

fdpapp

udptofdp fdptoudp

fdpq fdpofdpi

Outgoing PDUs

IP Network

Sent PDU
Notification

Incoming
PDUs

Outgoing
PDUs

Link
CuesEvents

fdplink

Incoming
UDP Datagrams

Outgoing
UDP Datagrams

udprelay

relay

Commands

UDP
Datagrams

fdpreq
Requests

Figure 3-1 The core JPL CFDP processes (fdpd, fdpi, fdpq, fdpo) are reused in
MESSENGER’s ground system.

forward PDU data received from other entities to CFDP
and receive PDU data from CFDP for transmission to
other entities. These functions allow the software
developer to implement CFDP over a variety of transport
layer protocols.

4 Integration of JPL CFDP
To integrate JPL’s CFDP software into the existing
JHU/APL ground system, software was developed to
transport PDUs to and from the spacecraft, to control and
monitor the ongoing CFDP processing and to process
downlinked files as the transactions complete. Section
4.1 provides a description of the overall design of the new
software.

As described above, the transport interface is simple and
easy to use. However, the interface for controlling and
monitoring the JPL CFDP software is not as well defined.
The fdpreq, fdpapp and fdplink programs are provided as
examples, but control and monitoring of the underlying
SDR is not demonstrated. Fortunately, the JPL
developers have provided timely support via email, and

the test harness provided by JPL makes it possible to fully
test a new user program. The use of the test harness in
support of JHU/APL’s new software development is
described in Section 4.2.

The JPL CFDP software is delivered as a complete, self-
contained system. This allows the system to be built and
tested in a stand-alone configuration. For the operational
MESSENGER ground system, JHU/APL is using the core
functions of the JPL CFDP software, not the test harness.
A good part of the integration effort turned out to be
setting up the scripts and configuration files to launch just
the selected core processes in the desired operational
configuration for MESSENGER, as described in Section
4.3.

Software reuse was a primary design goal in the
MESSENGER CFDP ground software development. A
significant level of reuse was achieved, and most of the
new software developed to integrate JPL’s software into
JHU/APL’s ground system for MESSENGER is reusable
in future JHU/APL missions. This is discussed in more
detail in Section 4.4.

dsn_tlm_if router

DSMS

SFDUs

PDUs

STFs

STFs

FrontEnd
CSCI

jpl_cfdp

Telemetry
Packet Data

Onboard File
Directory

Image Data

TPs Directory
Entries

Image
Data

cfdp_gse
indications

filename

Image
Data

cfdp_image_file

cfdp_tp_file

cfdp_dir_file filename

filename,
open/close

times

Directory
Entries

TPs

Assessment
CSCI STP Files

cfdp_out

PDUs

Command Packets

Command
CSCI

Downlink S/C
File Archive

Packet Files

Directory Files

Image Files

IDR File

SFDUs (recovery)

Figure 4-1 JHU/APL’s CFDP ground software reuses JPL’s core CFDP
processes and JHU/APL’s common ground software assets.

GSE Status
Telemetry

GSE
Control
Protocol

cfdp_gse
Log File

Log Messages

build_tlm

requests & link cues

4.1 CFDP Ground Software Design
Figure 4-1 shows the CFDP ground software processing.
The router and cfdp_out processes provide PDU
downlink and uplink. The cfdp_gse process controls and
monitors the JPL CFDP software. MESSENGER files
are processed as soon as downlink completes:
cfdp_image_file handles image files, cfdp_dir_file handles
on-board file system directory files and cfdp_tp_file
handles telemetry packet files.

4.1.1 PDU Transport
The CFDP protocol leaves the choice of transport layer up
to the mission. In MESSENGER, PDUs are uplinked in
CCSDS command packets and downlinked in CCSDS
telemetry transfer frames.

The cfdp_out process encapsulates the handling of uplink
PDUs. The uplink PDUs are obtained from the CFDP
software using libfdput. For each PDU received from the
JPL CFDP software, cfdp_out builds a MESSENGER
command packet and sends it to the JHU/APL Ground
System Command CSCI (Computer Software
Configuration Item) for uplink. The Command CSCI
builds and transmits command frames, interleaving
cfdp_out’s packets with real-time packets generated by
EPOCH.

The existing router process performs CCSDS telemetry
packet reconstruction from frame data fields; it was a
simple matter to extend router to handle downlink PDU
reconstruction as well. MESSENGER telemetry VC6
(Virtual Channel 6) frames are dedicated to transporting
PDUs. The PDUs are not aligned in the transfer frame
data areas, so the router software reconstructs PDUs from
data segments spanning frames. As PDUs complete, they
are submitted to the JPL CFDP software through calls to
JPL’s libfdput.

4.1.2 Control and Monitoring
JPL’s CFDP implementation assumes the presence of a
“user program” that issues directives and handles
indications for CFDP control and monitoring purposes.
JPL provides fdpapp as an example but fully expects
missions to develop their own user programs specific
to their needs. JHU/APL developed the cfdp_gse
UNIX/C++ process to play the role of user program
for the MESSENGER ground system.

The JHU/APL ground system provides remote control
and monitoring capabilities for any GSE. The typical
use of this capability is for integration of external
ground hardware systems, but it can also be used to
control and monitor internal software systems. JPL’s
CFDP runs continuously and autonomously; from the
ground system’s point of view, the CFDP software is

just another GSE. The cfdp_gse process wraps JPL’s
CFDP software, implementing the JHU/APL-specific
GSE communications protocol and making JPL CFDP
look like a GSE to the rest of the JHU/APL ground
system. Figure 4-2 shows the static class structure of the
cfdp_gse software.

The Fdpd class wraps the JPL CFDP control and
monitoring software, adding many useful user program
features:

• Application-level control directives
• Link-level control directives
• Event transmission and logging
• Periodic status of all active transactions
• Ability to cancel all active transactions
• File post-processing invocation

By wrapping JPL CFDP in a class, namespace collisions
resulting from global names and C-preprocessor
definitions are eliminated.

The CfdpGseCmdClient class implements the GSE
control protocol. The parent class, GseCmdClient,
supports the TCP/IP socket control communications
required of all GSEs, while the CfdpGseCmdClient child
class encapsulates the controls specific to JPL’s CFDP
software. The child’s main job is to parse and validate the
EPOCH STOL (Spacecraft Test and Operations
Language) directives destined for JPL’s CFDP.

The CfdpGseTlmClient class implements the GSE
monitoring protocol. The GseTlmClient parent class
provides the TCP/IP socket monitoring communications
required of all GSEs. The CfdpGseTlmClient child class
encapsulates the monitoring specific to JPL’s CFDP
software. In particular, the child constructs periodic

Figure 4-2 The cfdp_gse user program is layered on classes that
encapsulate the JPL CFDP software and the JHU/APL GSE control and
monitoring protocol.

CfdpGse

S igConfig

Logger

CfdpGseCmdClient

Fdpd

CfdpGseTlmClient

AutoCloseLog

1

1

1

1

1

1
11

1

1

1

1

cfdp_gse and active transaction status messages for
transmission to the ground system.

The cfdp_gse process configuration is specified in XML
(eXtensible Markup Language). SigConfig parses the
configuration file using Apache Xerces C++. The
configuration file syntax is validated using an XML
Schema.

Events are logged to an ASCII file. The Logger class
provides standard file naming and event message
formatting for multi-threaded applications. To prevent
log files from growing indefinitely, the AutoCloseLog
class periodically closes out the current log file and opens
a new one.

4.1.3 Downlink File Processing
 The MESSENGER ground system must perform post-
processing of three different types of files downlinked via
CFDP: files of telemetry packets, files containing
directory information regarding the spacecraft’s file
system, and critical image files. The processing of these
files is handled by cfdp_tp_file, cfdp_dir_file and
cfdp_image_file, respectively. The file types are
distinguished by special naming conventions. Post-
processing begins after an indication is received from the
JPL software, notifying cfdp_gse that a file was
downlinked. Cfdp_gse will initiate the post-processing of
the file. For files of telemetry packets, additional headers
are added so that other ground software tools can process
them at a later time. Directory files are simply formatted
and displayed in a window on the screen. Image files that
are needed immediately for other processing in the MOC
are decompressed. After the files are processed, they are
distributed to the appropriate location.

4.2 JHU/APL User Program Testing
The cfdp_gse process is driven by STOL directives,
CFDP indications and periodic timers. This makes the
availability of test drivers essential for stand-alone
testing. Two simple Perl scripts, cmd_if_sim.pl and
build_tlm_sim.pl, were written to play the role of the
MOC (Mission Operations Center), but no driver
development was required to simulate the MESSENGER
CFDP system; the JPL CFDP test harness was reused for
that purpose. The test harness requires two UNIX
workstations, one to play the role of spacecraft, and one to
play the role of ground system. Figure 4-3 illustrates the
complete cfdp_gse test configuration.

JPL provides an extensive set of test scripts, simulating a
variety of CFDP usage scenarios. The only change
required for stand-alone cfdp_gse testing was a small
modification to the start-up script allowing the tester to
select cfdp_gse rather than fdpapp.

4.3 JPL CFDP Software Configuration
To integrate the core JPL CFDP processes into the
MESSENGER ground system, scripts and configuration
files had to be developed. The JPL test harness provided
source-level resources for this effort, but the scripts and
configuration files had to be modified for the operational
environment.

A script was written to generate the operational
configuration files; it calls JPL’s fdp_config script with
the parameters appropriate to MESSENGER. JPL’s
fdp_start script was modified to run just the core JPL
CFDP processes without the test scaffolding:
fdp_sdrdefine, fdpd (which runs fdpo), fdpi and fdpq. The
cfdpconfig.pvl file was tailored to select the

IP
Network

Commands

Requests,
Link Cues

Incoming PDUs

Notification
Tokens

fdpd

cfdp_
gse

udptofdp fdptoudp

fdpq fdpofdpi

Outgoing PDUs

Sent PDU
Notification

Incoming
PDUs

Outgoing
PDUs

Events

build_
tlm_sim

Incoming
UDP Datagrams

Outgoing
UDP Datagrams

udprelay

relay

UDP
Datagrams

Control Monitorcmd_if_
sim

Incoming
UDP Datagrams

Requests

Incoming PDUs

Notification
Tokens

fdpd

fdpapp

udptofdp fdptoudp

fdpq fdpofdpi

Outgoing PDUs

Sent PDU
Notification

Incoming
PDUs

Outgoing
PDUs

Link
CuesEvents

fdplink

Outgoing
UDP Datagrams

fdpreq
Requests

Ground
Entity

Space-
craft
Entity

Figure 4-3 The JPL CFDP test harness provided a useful environment for developing
JHU/APL’s cfdp_gse user program (test harness processes are shaded in the diagram).

MESSENGER CFDP options.

Configuration of the SDR is not obvious. These
parameters have to be tuned based on usage patterns.
JHU/APL added statistics to the periodic status
information produced by cfdp_gse to get visibility into
SDR usage, but SDR tuning will be an on-going concern.

4.4 Software Reuse
Ivar Jacobson defines reuse level as “the ratio of size of
workproducts derived from reusable component systems
to total application size”ix. For the MESSENGER CFDP
ground software implementation, the JPL CFDP is the
reusable component system; the C-language portion of
JPL CFDP is 39,030 SLOCs (Source Lines of Code)
according to linecnt.plx. Table 4-1 shows that 5,765 new
C++ SLOCs were developed to integrate JPL CFDP. So
the reuse level is R = 39,030 / (39,030 + 5,765) = 87%.

Table 4-1 SLOCs written to integrate JPL CFDP

Process Total new
SLOCs

% reusable in
future missions

router 315 61%
cfdp_out 1,007 100%
cfdp_gse 4,443 98%
Total: 5,765 96%

To estimate how much effort was saved, assume that
JHU/APL had to develop the JPL CFDP from scratch, and
assume that the development rate for the JPL CFDP is the
same as the development rate for the new C++ code
written to integrate JPL CFDP. It took about one
developer-year to write the new C++ code, so JHU/APL
saved = 39,030 x (1 / 5,765) = 6.8 developer-years.

The new C++ code was developed by JHU/APL to be a
reusable component in future systems. We estimate only
4% of the new code is MESSENGER-specific; 96% of
the new code is reusable in future JHU/APL missions
requiring CFDP support.

5 Conclusion
The reuse of JPL’s CFDP software implementation in the
JHU/APL MESSENGER Ground System has worked
well. The JPL CFDP software has saved significant
development effort on MESSENGER, allowing a
complete CFDP ground system to be deployed in time for
early spacecraft I&T activities.

The integration has not been totally seamless. To meet
the MESSENGER Ground System requirements, the
capability of reporting the status of all active transactions
had to be added to the JPL CFDP software.

MESSENGER was not the only user to request this
enhancement, so while we had to wait for the feature to be
implemented, we received a robust product, reviewed and
tested by multiple missions.

Some change requests made by APL were not accepted
for implementation in the JPL CFDP software because
they were not considered to be of general utility; in those
cases, APL’s cfdp_gse user program was extended to
provide the required functionality.

Additional enhancements to the JPL CFDP software
would help future integration efforts go more smoothly:

• Encapsulation of the user program interface.
• Clarification of the SDR control, monitoring, and

tuning.

These enhancement requests have been submitted to the
JPL CFDP software developers and may become
available in a future release.

Integration work remains to be done at JHU/APL for
MESSENGER. The JPL CFDP software continues to
evolve rapidly; in six months, the system grew by 15%
(5,125 SLOCs), and the official release of the version we
are using won’t be available for another two months.
JHU/APL will need to integrate the next official release
for the system to be supportable. Finally, the
implementation of the file-based, persistent SDR is just
becoming available and remains to be integration tested.
This feature will become increasingly important to
MESSENGER as it progresses through the later stages of
development in preparation for launch.

Overall, the reuse of JPL CFDP in the JHU/APL
MESSENGER ground system has been successful. The
CFDP ground software system was delivered on schedule
for MESSENGER I&T. Reuse of the JPL CFDP software
has kept costs low. Furthermore, the approach has
resulted in a reusable JHU/APL CFDP ground system,
providing CFDP capabilities to other missions if desired,
with little additional software development effort.

ACKNOWLEDGEMENTS
The authors would like to acknowledge the extensive
technical support and encouragement provided by Scott
C. Burleigh and Kathy B. Rundstrom at JPL. The
JHU/APL CFDP ground software implementation
described in this paper would not have been possible
without their rapid responses to our questions and their
timely software deliveries.

REFERENCES

i CCSDS File Delivery Protocol (CFDP).
Recommendation for Space Data System Standards,
CCSDS 727.0-B-1. Blue Book. Issue 1. Washington,
D.C.: CCSDS, January 2002.
http://www.ccsds.org/documents/727x0b1.pdf

ii C. J. Krupiarz, S. C. Burleigh, C. M. Frangos, D. B.
Holland, K. M. Lyons, W. C. Stratton, “Use of CCSDS
File Delivery Protocol on MESSENGER”: Space
Operations 2002 Conference.
http://www.ccsds.org/documents/so2002/spaceops02_p_t
5_35.pdf

iii CCSDS File Delivery Protocol (CFDP). Report
Concerning Space Data System Standards, CCSDS 720.1-
G-1 and CCSDS 720.2-G-1. Green Book. Issue 1.
Washington, D.C.: CCSDS, January 2002.
http://www.ccsds.org/documents/720x1g1.pdf
http://www.ccsds.org/documents/720x2g1.pdf

iv Table developed by Scott C. Burleigh, JPL.

v F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
and M. Stal, Pattern-Oriented Software Architecture; A
System of Patterns, Volume 1. John Wiley & Sons Ltd.,
1996. ISBN 0-471-95869-7.

vi http://www.integ.com/

vii S. C. Burleigh, “Operating CFDP in the Interplanetary
Internet”: Space Operations 2002 Conference.
http://www.ccsds.org/documents/so2002/spaceops02_p_t
5_22.pdf

viii Current JPL CFDP usage information provided by
Kathy B. Rundstrom, JPL.

ix I. Jacobson, M. Griss, and P. Jonsson, Software Reuse;
Architecture, Process and Organization for Business
Success. ACM Press, 1997. ISBN 0-201-92476-5.

x Source Lines of Code estimates per Reasoning Systems,
Inc. linecnt.pl Version 1.5
(http://www.reasoning.com/downloads/c_line_count_esti
mator.html).

